Zeitschrift:	Schweizerische Bauzeitung
Herausgeber:	Verlags-AG der akademischen technischen Vereine
Band:	71/72 (1918)
Heft:	13
Artikel:	Vom Quecksilberdampf-Gleichrichter
Autor:	[s.n.]
DOI:	https://doi.org/10.5169/seals-34819

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 26.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Vom Quecksilberdampf-Gleichrichter. - Wettbewerb für eine Synagoge in Zürich. - Die Berechnung des durchlaufenden Brückengewölbes auf elastischen Pfeilern. - Miscellanea: Die Uebertragung des Geschützdonners auf grosse Enternungen. Basler Münster-Photographien-Werk. Westinghouse - Elektrostahlofen. Eine einfache Muffendichtung für Rohrleitungen aus Eisenbeton. Zum Wettbewerb für eine Reuss-

brücke bei Gisikon. Der Verein deutscher Iugenieure. - Konkurrenzen: Bezirkspital in Aarberg. Arbeiterkolonie der A.-G. Piccard, Pictet & Cie. in Aire Nekrologie: G. Cuénod. A. Bourgeois. J. Keller. - Literatur: Das Dörren von Obst und Gemüse in der Industrie. Literar. Neuigkeiten. - Vereinsnachrichten: Zürcher Ingenieur- und Architekten-Verein. G. e. P.: Stellenvermittlung.

Band 72. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet. Nr. 13.

ANV

WWWWWW

2002

s

JWW

Vom Quecksilberdampf-Gleichrichter.

Im Laufe der letzten Jahre ist der Quecksilberdampf-Gleichrichter zu einem technisch vollkommenen Apparat ausgebildet worden, der schon in zahlreichen Betrieben als Ersatz für die rotierenden Wechselstrom-Gleichstrom-Umformer Eingang gefunden hat. Erst vor Kurzem haben wir auf die Inbetriebnahme eines solchen Apparates für 800 Volt Spannung zur Speisung der Bahn Lausanne-Moudon hingewiesen (vergl. S. 104 lfd. Bd., 14. Sept. 1918). Weitere Anlagen für Bahnbetrieb mit Ouecksilberdampf-Gleichrichtern für noch bedeutend höhere Spannungen sind im Bau. Ueber die Konstruktion des Gross-Quecksilberdampf-Gleichrichters nach Bauart Brown Boveri & Cie. haben wir seinerzeit in Band LXIX, Seite 18 und 25 (13./20. Januar 1917) Näheres mitgeteilt. Zur Ergänzung jener Veröffentlichung bringen wir im Folgenden einen Bericht über Untersuchungen, die vor etwa einem Jahre an einer Versuchs-Gleichrichteranlage im Laboratorium der Eidgenössischen Technischen Hochschule in Zürich ausgeführt wurden und die einen allgemein orientierenden Ueberblick geben über die Wirtschaftlichkeit und die Betriebsverhältnisse dieser Apparate. Wir entnehmen diesen, von Ingenieur A. E. Müller verfassten Bericht unter Weg-

lassung einiger Abbildun-gen den "BBC Mitteilungen" vom August dieses Jahres.

Die für die Untersuchungen benutzte Anlage besteht aus einem Gleichrichter für 80 Amp. bei 110 bis 220 Volt und 50 Perioden, mit sechs Anoden. Der Apparat, dessen Konstruktion aus Abbildung 1 ersichtlich ist, ist an einem Drehstrom - Transformator von 17,5kVA Leistung, 347/250 Volt Primär- und 6×145 Volt Sekundärspannung angeschlossen, der auf der Primärseite Dreieck-, auf der Sekundärseite Sechsphasen-Sternschaltung auf-Zur Regulierung weist. dient eine Drosselspule mit

verschiebbaren Kernen, ohne Schlussjoch, mit je zwei Spulen pro Kern. Für Messungen die wurde die in Abbildung 2 dargestellte, für den

Sechsphasen-Betrieb (Sechsanoden - Betrieb) gültige Schaltung angewendet. Für Drei- und Zwei-Anoden - Betrieb vereinfacht sich die Schaltung entsprechend.

Abb. 1. Schnitt durch den Gleichrichter.

Wirkungsgrade bei induktionsloser Belastung.

Für die Wirkungsgrad-Bestimmungen der Gleichrichter-Umformeranlage kommen die Verluste im Gleichrichter-Gefäss, in den Regulierdrosselspulen und im Transformator in Betracht. Dabei ist ein Unterschied zu machen, ob für die Wirkungsgrad-Messungen eine Regulierung auf konstante Verbrauchspannung vorgesehen ist, oder ob die bei fester Einstellung der Drosselspulen auftretende Spannungs-Abnahme im Wellenstromkreis (Gleichstromseite) bei Belastungszunahme als zulässig angenommen wird. Die Wirkungsgradkurven weichen, wie aus Abb. 3 bis 8 hervorgeht, für die beiden Betriebsfälle ziemlich stark voneinander ab.

Aus Abbildung 2 ist die Schaltung der Instrumente für die Wirkungsgrad-Bestimmungen ersichtlich. Auch im Falle des Zwei-Anodenbetriebes war der Transformator primär dreiphasig angeschlossen (vergl. Abb. 12, S. 119).

Die betreffenden Wirkungsgradkurven, die für Ein-, Drei- und Sechsphasenbetrieb aufgenommen sind, zeigen den Verlauf des Wirkungsgrades des Gleichrichtergefässes allein, der ganzen Umformeranlage: Transformator-Drosselspule-Gleichrichter-Verbrauchsnetz und schliesslich des Transformators einschliesslich Regulierdrosselspule. Bezüglich des Gleichrichters hat man grundsätzlich zwei verschiedene Wirkungsgrade zu unterscheiden:

LEGENDE :

- M Maximalautomat,
- Transformator, Т S
- Sicherungen. D Drosselspulen,
- G Gleichrichter,
- A₁A₆ Anoden, C Kathode,
- Ν Gleichstromnetz,

PTe aus dem Transformator fliessende Teileffekte,

- Effektverlust in einer Dampfstrecke, Effektivwert des Anodenstromes mit JA
- Hitzdraht-Instrument gemessen, JmA Mittelwert des Anodenstromes mit
- Drehspulen-Instrument gemessen, EA Spannung zwischen Anode und Transformator-Nullpunkt, Effektivwert,
- E Effektivwert der gleichgerichteten Anodenspannung (Wellenspannung), mit Hitzdrahtinstrument gemessen,
- Em Mittelwert der Wellenspannung, mit Drehspulen-Instrument gemessen,
- Effektivwert des gleichgerichteten Stromes (Wellenstrom), mit Hitzdraht-Instrument gemessen, Mittelwert des Wellenstromes, mit
- Im Drehspulen-Instrument gemessen,
- P wattmetrische Wellenstromleistung.

Abb. 2. Schaltungsschema der Gleichrichter-Anlage.

Jm

Wenn festgestellt werden soll, wie gross die reine Gleichstromleistung ist, die der Gleichrichter abgibt, - sie soll kurz "elektrolytische Leistung" und der ihr entsprechende Wirkungsgrad "elektrolytischer Wirkungsgrad" genannt werden, — so sist die abgegebene Leistung mit Drehspulen-Strom- und Spannungsmessern, die Mittelwerte anzeigen, zu messen. Der "elektrolytische Wirkungsgrad" berücksichtigt somit die in der dem konstanten Gleichstrom übergelagerten Wechselstromkomponente des Wellenstroms enthaltene Energie nicht. (Vergl. Oszillogramm Nr. 17 in Abbildung 13). Dieser Wirkungsgrad wird beispielsweise bei der Ladung einer Akkumulatorenbatterie mittels Gleichrichter in Betracht kommen. Bezeichnet man den "elektrolytischen Wirkungsgrad" des Gleichrichters mit η' , so stellt er sich dar als:

$$=\frac{1}{p},$$

n

wobei $P' = J_m \cdot E_m$ das Produkt aus den Mittelwerten von Wellenstrom und Wellenspannung, also die reine Gleichstromleistung, und P_1 den wattmetrisch gemessenen, in das Gleichrichtergefäss eingeführten Effekt bedeutet.

1. Spannungsverhältnisse. Vom Spannungsabfall in der Dampfstrecke und den Verlusten in derselben ist der Wirkungsgrad des Gleichrichters abhängig. Im Augenblick der Lichtbogenbildung sinkt der hohe Widerstand zwischen Anode und Kathode auf einen verhältnismässig geringen Wert herab, der solange auf diesem Betrag verbleibt, als der Kathode von der Anode her Strom zufliesst. Bezeichnet man die Spannung, die zwischen Anode und Kathode

Spannungsverhältnisse, Oszillogramme, Stromverhältnisse.

LEGENDE zu den Abb. 3 bis 8: Kurve 1 = energetischer (wattmetrischer) Wirkungsgrad η des Gleichrichters; Kurve 2 = elektrolytischer Wirkungsgrad η' des Gleichrichters; Kurve 3 = energetischer Systemwirkungsgrad η_s der ganzen Anlage; Kurve 4 = elektrolytischer Systemwirkungsgrad η' s der ganzen Anlage; Kurve 5 = Wirkungsgrad von Transformator und Drosselspule η Tr.

Der andere Fall der Wirkungsgrad-Bestimmung des Gleichrichtergefässes ist der, dass die *wattmetrisch* gemessene, aus dem Gefäss ausgeführte Leistung mit der wattmetrisch gemessenen, in das Gefäss eingeführten Leistung verglichen wird. Dieser Wirkungsgrad soll kurz mit η bezeichnet und "energetischer Wirkungsgrad" genannt werden. Er kommt beispielsweise bei Glühlampenbelastung voll zur Geltung und wird immer den günstigeren der beiden möglichen Fälle der Wirkungsgradmessung darstellen. Mit η_{Tr} werde im fernern der Wirkungsgrad von

Mit η_{Tr} werde im fernern der Wirkungsgrad von Transformator und Regulierdrosselspule zusammen bezeichnet und mit η'_{s} , bezw. η_{s} , entsprechend dem Sinn der Wirkungsgrade η' und η , der "elektrolytische", bezw. "energetische" Wirkungsgrad der Umformung (Systemwirkungsgrad), wobei die auf der Gleichstromseite nutzbare Leistung mit der in den Transformator eingeführten Leistung verglichen wird.

Es ist noch im besondern darauf hinzuweisen, dass die verhältnismässig niedrigen Werte der aufgestellten Wirkungsgradkurven bei höhern Spannungen und Leistungen bedeutend günstiger ausfallen. herrscht, als Momentanwert mit e_{AC} , so ist diese während des Stromdurchgangs, wie aus Versuchen, insbesondere Oszillogramm-Aufnahmen ersichtlich ist (vergl. Oszillogramm Nr. 9 und 10 in Abbildung 13), konstant und gleich dem Spannungsabfall ε in der Dampfstrecke. Betrachtet man beispielsweise eine Dampfstrecke des Drei-Anoden-Gleichrichters und bezeichnet deren Effektverlust mit P_{v} und den in ihr fliessenden Momentanwert des Anodenstromes mit i_{A} , so gilt:

$$P_{v} = \frac{\mathbf{I}}{T} \int_{\mathbf{o}}^{T_{3}} e_{AC} \cdot i_{A} \cdot dt;$$

wobei T die Periodendauer des Wechselstromes bedeutet. Während des Stromdurchgangs, also während der Zeit T/3, ist für eine Dampfstrecke nun $e_{AC} = \varepsilon = \text{konstant}$; somit :

$$P_v = \varepsilon \cdot \frac{\mathbf{I}}{T} \int_{\mathbf{o}}^{t_{A}} \cdot dt.$$

Wie später gezeigt wird, kann man setzen:

$$\frac{J_m}{3} = \frac{\mathbf{I}}{T} \int_{\mathbf{0}}^{T/3} \mathbf{i}_A \cdot dt,$$

118

wobei Jm der mit Drehspuleninstrument gemessene Mittelwert des aus der Kathode fliessenden Wellenstromes ist.

Die Verluste im Gleichrichter sind also auf die von ihm gelieferte mittlere Gleichstromstärke zu beziehen. War für den Dreiphasen-Gleichrichter der auftretende Verlust pro Dampfstrecke $P_v = rac{\varepsilon \cdot J_m}{3}$, so ist der totale Verlust allgemein für ein Gleichrichtergefäss:

 $P_{vg} = \varepsilon \cdot J_{m}.$

ungefähr konstantes Betriebsvakuum und veränderliche Strombelastung der Dampfstrecke der Spannungsabfall, mit Gleichstrom ermittelt, dargestellt; während in Abb. 10 die Abhängigkeit des Spannungsabfalles vom Vakuum gezeigt ist.

Entgegen der erwähnten Bestimmungsweise des Spannungs- und Effektverlustes in der Dampfstrecke sind noch weitere zwei Methoden möglich. Man kann durch Differenzbildung der wattmetrisch zugeführten Leistung und der wattmetrisch gemessenen ausgeführten Leistung die Ver-

Der während der Durchlässigkeit vorhandene Spannungsabfall & der Dampfstrecke wird am zuverlässigsten und praktisch hinreichend genau mit Gleichstrom bestimmt, indem man beispielsweise die vorher jonisierte Dampfstrecke mittels einer Akkumulatoren-Batterie speist. Die erhaltenen Werte decken sich sehr gut mit den aus den Oszillo-grammen ermittelten Werten. In Abbildung 9 ist für

luste im Gleichrichter bestimmen. Im vorliegenden Falle lässt sich eine Genauigkeit von höchstens 4 0/0 erreichen. Man kann auch, nach der in Abbildung 2 angegebenen Schaltung, die Verluste in einer Dampfstrecke direkt mit einem Wattmeter messen. Durch Division dieser Verluste durch den Effektivwert des Anodenstromes erhält man einen effektiven Spannungsverlust eeff in der Dampfstrecke.

Abb. 13. Spannungs- und Strom-Oszillogramme.

- 1 Transformator Primärspannungen zwischen UV, VW und UW (vergl. Abb. 12).
- 2 Transformator-Sekundärspannungen zwischen OX, OY und XY.
- 3 Spannung zwischen O und Y; Sckundäre Transformator-Phasen-Spannung.
 4 Spannung zwischen O und X; Sckundäre Trans-
- formator-Phasen-Spannung.
- 5 Spannung über der Drosselspule RS. 6 Spannung über der Drosselspule R' S'.
- 7 Spannung zwischen Anode A4 und Transformator-Nullpunkt O.
- 8 Spannung zwischen Anode A4 und Transformator-Nullpunkt O.
- 9 Elektrodenspann. zwischen Anode A4 u. Kathode C.
- 10 Elektrodenspann. zwischen Anode A1 u. Kathode C.
- Wellenspannung über der Belastung C' O'.
- 12 Oszillogramme 3 und 4 über der gleichen Zeitaxe.
- 13 Oszillogramme 7 und 8 über der gleichen Zeitaxe. 14 Anodenspannung zwischen Anode A1 und A4.
- 15 Oszillogramme 9 und 10 über der gleichen Zeitaxe.
- 16 Anodenströme in den Anoden A1 und A₄.
- 17 Wellenstrom in der Belastung C'O'.

Weil aber der Formfaktor der durchfliessenden Stromstösse kaum ermittelt werden kann und wegen der sehr ungünstigen Belastung der Wattmeterspannungspule (Verlauf der Spannung e_{AC} in den Oszillogrammen 9 und 10 in Abbildung 13) ist diese Methode nicht angebracht. In Abbildung 11 ist der Verlauf des aus direkter wattmetrischer Verlustmessung bestimmten Spannungsabfalles ε_{eff} dargestellt. Er weicht sehr stark von den Kurven der Abbildung 9 ab.

2. Ossillogramm-Aufnahmen zur Demonstration der nungsverhältnisse. Um die Spannungsverhältnisse, Spannungsverhältnisse. insbesondere die Umformung der dem Transformator zugeführten Wechselspannung in die dem Gleichrichter entnommene Wellenspannung zu zeigen, sind die Oszillogramme 1 bis 15 (Abbildung 13, Seite 119) aufgenommen worden. Dabei sind der Uebersichtlichkeit wegen die Verhältnisse für den Einphasenbetrieb zusammengestellt. Die Schaltung der Anlage bei der Aufnahme der Oszillogramme war die in Abbildung 12 dargestellte; die im Schema eingeführten Buchstaben bezeichnen Punkte, über denen Spannungskurven aufgenommen wurden. Die verschiedenen Oszillogramme sind so zusammengestellt, dass die Kurven zeitlich in die richtige Lage zu einander gesetzt sind. Die Richtung des Zeitpfeiles ist von links nach rechts und die Lage der Kurven zur Zeitaxe durchwegs so, dass ihrem Verlauf über der Zeitaxe der Verlauf in der "durchlässigen" Zone entspricht. Werden dem Transformator die in Oszillogramm

Nr. 1 dargestellten, nahezu sinusförmigen Spannungskurven e_{12} , e_{23} , e_{31} aufgedrückt, so treten auf der Sekundärseite die in Oszillogramm 2 dargestellten Spannungen auf; e_{p_1} und e_{p_2} sind die Spannungen zwischen Transformatoren-Nullpunkt und Aussenleiter, während die Spannung e_v die Spannung zwischen den beiden Aussenleitern darstellt. Die in Oszillogramm 3 und 4 nochmals getrennt darge-stellten, gegeneinander um 180° verschobenen Spannungen e_{p1} und e_{p2} werden nun allmählich in die Wellenspannung umgeformt. Die erwähnten Spannungen rufen in den Anodenzweigen Stromimpulse hervor, die sich zu einem Wellenstrome zusammensetzen, der periodisch den Wert Null erreicht und deshalb praktisch unmöglich ist, insofern nicht für eine dauernde Erregung der Kathode gesorgt wird. Die notwendige Ueberlappung der Spannungskurven wird nun durch die in die Anodenzweige eingeschalteten Drosselspulen geschaffen. Oszillogramm 5 und 6 zeigen den Verlauf der Spannungen über den Drosselspulen RS und R'S'. Durch ihre Wirksamkeit kommt der Verlauf der in den Oszillogrammen 7 und 8 dargestellten Kurven e'A und e"A zwischen den beiden Anoden und dem Transformator-Nullpunkt zustande. Vergleicht man die Kurven e'_A und e''_A mit e_{p1} und e_{p2} , so sieht man, dass die positiven Halbwellen der letztern verzerrt worden sind. Die zur Wellenstrom-Erzeugung notwendige Ueberlappung wird durch diese Verzerrung bewerkstelligt, wie aus Oszillogramm 13 deutlich ersichtlich ist. Infolge der charakteristischen Eigenschaft der Quecksilberdampfstrecke, Strom nur in einer Richtung durchzulassen, werden nur die positiven Halbwellen der Spannungen e'_A und e''_A zur Bildung der in Oszillogramm 11 dargestellten Wellenspannung benutzt. Der Verlauf des Kurvenzuges $e'_A e''_A \dots$ in Oszillogramm 13 zeigt daher bereits die zu erwartende Form der Wellenspannung. Aus Oszillogramm 9 und 10 ist der Verlauf der Elektrodenspannungen, d. h. der Spannungen zwischen Anode A_1 , Anode A_4 und der Kathode C zu ersehen. Der Verlauf dieser Spannungen in der "durchlässigen" Zone entspricht dem Verlauf der positiven Halbwellen der Spannungen e'A und e''A und stellt nichts anderes als den konstanten Spannungsabfall ε in der Dampfstrecke während des Stromdurchflusses dar.

Die Oszillogramme 12, 13 und 15 stellen bereits besprochene zusammengehörige Kurven nochmals dar, über der gleichen Zeitaxe aufgenommen. Aus Oszillogramm 14 ist der Verlauf der Anodenspannung zwischen den beiden Anoden A_1 und A_4 ersichtlich. Sie stellt die durch die

Drosselspulen bewirkte Umformung der Kurve e_v in Oszillogramm 2 dar. Oszillogramm 16 zeigt, entsprechend den Spannungen in Oszillogramm 13, die sich überlappenden Anodenströme, und Oszillogramm 17 den aus der Kathode fliessenden Wellenstrom.

Wettbewerb für eine Synagoge in Zürich.

I. Rang, Entwurf Nr. 55. — Architekt Gottfried Bachmann, Zürich. Ansicht von der Ecke Freigut- und Brandschenke-Strasse.

3. Stromverhältnisse. Die Wellenstromkurve als Superpositionskurve der einzelnen Anodenstromkurven pulsiert während einer Periode des Wechselstromes so manches Mal, als Anoden zur Gleichrichtung in Betrieb gesetzt werden. Die "Schwankung" des Wellenstromes, das ist das Verhältnis $s = \frac{J_{max} - J_{min}}{2 \cdot J_{mittel}}$ wird umso kleiner, je grösser die zur Gleichrichtung verwendete Phasenzahl. Bei einem bestimmten Versuche und Zwei-Anodenbetrieb war beispielsweise $s_2 = 0.72$, während unter gleichen Verhältnissen beim Drei-Anodenbetrieb $s_3 = 0.45$ wurde.

Misst man die Anodenströme und den Kathodenstrom mit Drehspul-Instrumenten die Mittelwerte anzeigen, und sieht dabei von der Ueberlappung der einzelnen Stromimpulse ab (vergl. Oszillogramm 16), so misst beispielsweise beim Zwei-Anodenbetrieb das Instrument im Kreise der Kathode: $C^{T/2}$

$$J_m = \frac{\mathbf{I}}{T} \int_{\mathbf{0}}^{T/2} \mathbf{i}_A \cdot dt + \frac{\mathbf{I}}{T} \int_{T/2}^{T} \mathbf{i}_A \cdot dt;$$

d. h.: Bezieht man ganz allgemein die Messungen auf Mittelwerte, so ist die Summe der Anodenströme allgemein gleich dem Kathodenstrom.

Misst man die Anodenströme und den Kathodenstrom mit Instrumenten, die Effektivwerte anzeigen, so gilt für gleichmässig über die Anoden verteilte Belastung beispielsweise beim *Drei-Anoden-Gleichrichter*:

$$J = \frac{\mathbf{I}}{T} \sqrt{\int_{a_{A}}^{T/3} dt + \int_{a_{A}}^{2T/3} dt + \int_{a_{A}}^{2T/3} dt + \int_{a_{A}}^{T} dt} dt + \int_{a_{A}}^{T} dt ;$$

d. h. bei Anwendung von Strommessern, deren Ausschlag den Effektivwert angibt, ist beim Drei-Phasen-Gleichrichter

$$J = \frac{1}{T} \sqrt{3 J_A^2 \cdot T} = J_A \sqrt{3}.$$

Analog lässt sich zeigen, dass für den Einphasengleichrichter $J = J_A \sqrt{2}$ und für den Sechs-Phasen-Gleichrichter $J = J_A \sqrt{6}$ ist.