Zeitschrift:	Schweizerische Bauzeitung
Band:	97/98 (1931)
Heft:	9
Artikel:	Aubage de type Parsons à diamètre moyen constant: étude de quelques propriétés de leurs courbes de rendement, et conditions d'utilisation d'un profil d'ailette donné
Autor:	Colombi, Charles
DOI:	https://doi.org/10.5169/seals-44660

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 15.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Aubages de type Parsons à diamètre moyen constant. — III. Internationaler Kongress für Technische Mechanik. — Wettbewerb für ein Gewerkschaftshaus am Helvetiaplatz in Zürich. — Mitteilungen: Schall- und wärme-isolierende "Isolaphon-Konstruktionen. Ein schweizerischer Drehstrom-Generator von 50000 PS. Elektrische Heizung in der Wartburg. Um ein Bebauungsplanbureau Basel-Stadt. Eidgen. Techn. Hochschule. — Nekrologe: C. A. Parsons. C. Bonzanigo. — Wettbewerbe: Hochhaus-Hotel am Bundesbahnhof Basel. Bebauungsplan für Renens und die angrenzenden Gemeinden. Gemeindeverwaltungsgebäude Netstal. — Literatur. — Mitteilungen der Vereine: Zürcher Ingenieur- und Architeken-Verein. Sitzungs- und Vortrags-Kalender.

	Band 97	Der S.I.A. ist für den Inhalt des redaktionellen Teils seiner Vereinsorgane nicht verantwortlich. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.	Nr. 9
--	---------	--	-------

Aubages de type Parsons à diamètre moyen constant.

Etude de quelques propriétés de leurs courbes de rendement, et conditions d'utilisation d'un profil d'ailette donné. Par CHARLES COLOMBI, Ingénieur, Professeur à l'Ecole d'Ingénieurs de l'Université de Lausanne.

I. Données fondamentales.

Dans de précédentes recherches¹) nous avons montré qu'un ailettage multiple type Parsons est caractérisé par le diagramme des vitesses des éléments qui le constituent. Nous reproduisons, pour mémoire, dans la fig. I ce diagramme avec les légendes nécessaires à sa compréhension. Il convient d'observer que dans les calculs que nous allons établir, les diagrammes de tous les éléments en série sont supposés identiques entre eux. En outre, comme cela sera mis en évidence par la suite, le choix d'un profil d'ailette défini par certains angles seulement suffit pour fixer la géométrie du diagramme des vitesses correspondant.

Fig. 1. Diagramme des vitesses pour une turbine élémentaire type Parsons.

Soit:

z = nombre des turbines élémentaires en série qui constituent l'ailettage multiple;

aubage multiple, type Parsons.

Diagramme entropie-enthalpie.

- $\Delta i_0 = \text{différence d'enthalpie}^3$) disponible entre l'état initial de la vapeur en amont de l'ailettage et la pression finale, la détente étant supposée isentropique (kcal/kg);
- ∠*i*_d == différence d'enthalpie disponible (détentes isentropiques partielles) pour chaque distributeur des turbines élémentaires qui font suite à la première (kcal/kg);
- $\Delta i_d + \frac{A}{2g}c_2^2 = \text{idem}$, idem pour le distributeur de la première turbine élémentaire (kcal/kg); A = 1/427 kcal/kgm);
- $\Delta i_m = \text{idem}$, idem pour chaque file d'aubes mobiles des z turbines élémentaires en série (kcal/kg).

On remarquera que l'énergie disponible pour sa transformation en travail mécanique dans une turbine élémentaire est donnée, dans le cas considéré, par

$$E_n = \frac{A}{2g} c_2^2 + \Delta i_d + \Delta i_m$$

¹) Au sujet des ailettages Parsons nous signalons, entre autres, les articles suivants dans lesquels nous avons exposé la méthode de calcul qui sert de base à la présente recherche : "Studio sulla teoria generale delle turbine a vapore multiple" (en particulier le paragraphe 10). "Energia Elettrica". Milano, décembre 1926 et janvier 1927. — "Circa alcune proprietà delle palettature di turbine a vapore multiple, tipo Parsons". Festschrift Prof. Dr. A. Stodola. Orell Füssli, Zurich, 1929. — Cette même méthode a été utilisée dans notre travail ; "Les ailettages des turbines à vapeur multiples à action". Dunod, Editeur, Paris, 1929. — Enfin un article: "Le calcul des ailettages de turbines à vapeur multiples, type Parsons" est actuellement en préparation.

²) Enthalpie est la nouvelle expression pour la contenance thermique (Wärmeinhalt). La réd. En outre, tenu compte des notations rappelées cidessus et reproduites dans le diagramme entropie enthalpie (i - s) de la fig 2 (qui est simplement schématique et pas à l'échelle) on a

$$(\mathbf{I} + \sigma) \ \varDelta \, i_0 = \sum_{\mathbf{I}}^{Z} \left(\varDelta \, i_d + \varDelta \, i_m \right)$$

ou $\sigma =$ Facteur de récupération des pertes sous forme de chaleur.

Le long de tout l'aubage multiple, les pertes par phénomènes irréversibles (frottements, remous, chocs, etc.) sont définies par

$$\pi_d = \pi_m = \zeta \frac{A}{2g} c_1^2 = \zeta \frac{A}{2g} w_2^2$$

ou & est le coefficient de perte moyen, supposé constant.

D'autre part le travail mécanique fourni par une turbine élémentaire est donné par l'énergie E_n susmentionnée, diminuée de toutes les pertes qui affectent la transformation dans un élément, soit, en kcal et toujours par unité de poids de vapeur en circulation dans la machine:

$$A L_n = E_n - 2 \frac{A}{2g} \zeta c_1^2 - \frac{A}{2g} c_2^2$$

Ces données fondamentales acquises, les relations suivantes sont faciles à poser, comme définitions:

a) Rendement individuel d'une turbine élémentaire: $\eta_n = \frac{AL_n}{r}$

$$k_n = \frac{u}{E}$$

c) Rendement de l'ensemble d'un ailettage multiple à z éléments, l'énergie cinétique fournie au premier distributeur étant négligeable:

$$p_t' = \frac{z A L_n}{\Delta i_0}$$

d) Chiffre caractéristique de l'ailettage tel que défini à la lettre c) ci-dessus:

$$k = \frac{z u^2}{\Delta i_0}$$

En tenant compte des valeurs notées pour l'énergie E_n et le travail AL_n , sans entrer dans les détails des calculs qui mettent en évidence les vitesses absolues du fluide puisque nous les avons exposés dans les études qui ont été mentionnées, on obtient les équations suivantes:

$$\eta_n = \frac{\mathbf{z} \frac{u}{c_1} \cos \alpha_1 - \left(\frac{u}{c_1}\right)^2}{\left(\frac{1}{\mathbf{z}} + \zeta\right) + \frac{1}{\mathbf{z}} \left[\mathbf{z} \frac{u}{c_1} \cos \alpha_1 - \left(\frac{u}{c_1}\right)^2\right]} \quad . \quad . \quad . \quad (\mathbf{I})$$

$$k_n = 4189 \cdot \frac{\left(\frac{1}{c_1}\right)}{\left(\frac{1}{2} + \zeta\right) + \frac{1}{2} \left[2 \frac{u}{c_1} \cos \alpha_1 - \left(\frac{u}{c_1}\right)^2\right]} \quad . \quad . \quad (\text{II})$$

$$\eta_t' = \frac{\eta_t}{(1+o)} = \frac{2\frac{u}{c_1}\cos\alpha_1 - \left(\frac{u}{c_1}\right)^*}{\left(\frac{\tau}{2z} + \zeta\right) + \frac{2z-\tau}{2z} \left[2\frac{u}{c_1}\cos\alpha_1 - \left(\frac{u}{c_1}\right)^2\right]} \quad . \quad . \quad (\text{III})$$

$$k' = \frac{k}{1+\sigma} = \frac{\frac{4189\left(\frac{u}{c_1}\right)^2}{\left(\frac{x}{2z} + \zeta\right) + \frac{2z-x}{2z} \left[2 \frac{u}{c_1} \cos \alpha_1 - \left(\frac{u}{c_1}\right)^2\right]} \quad . \quad . \quad (IV)$$

Il y a lieu de remarquer au sujet de ces relations, qui constituent la base de la présente étude, que, pour s = 1, comme la récupération sous quelle forme que ce soit est nécessairement nulle, dans une turbine élémentaire, les relations (III) et (IV) donnent immédiatement, en guise de cas particulier, les valeurs déterminées par les équations (I) et (II).

II. Transformation des relations établies : rapports entre les rendements et les chiffres caractéristiques définis.

Afin de simplifier l'écriture nous posons:

$$C = 2 \frac{u}{c_1} \cos \alpha_1 - \left(\frac{u}{c_1}\right)^2 \quad . \quad (1)$$

Cette valeur introduite dans les équations (I) à (IV) permet d'écrire:

Avec

$$K_n = \frac{M_n}{4189}$$
 $K_n = \frac{M_n}{4189}$

nous déduisons la relation suivante des équations qui précèdent:

$$\frac{K'}{K_n} = \frac{k'}{k_n} = \frac{\eta \iota'}{\eta_n} = \frac{\left(\frac{1}{2} + \zeta\right) + \frac{1}{2}C}{\left(\frac{1}{2z} + \zeta\right) + \frac{2Z - 1}{2z}C} = R \ . \ (6)$$

Le rapport défini par l'équation (6) met en évidence les améliorations de rendement que détermine l'emploi d'une turbine multiple telle que définie, par comparaison avec celui d'une des turbines élémentaires qui le constituent, sans tenir compte de la récupération sous forme de chaleur, mais uniquement de celle sous forme d'énergie cinétique: son importance est par ce seul fait évidente.

Vu que la valeur de C définit complétement le diagramme des vitesses, on peut utilement étudier, pour tout ζ choisi, une fonction

$$\varphi(R, C, z) = 0$$

soit une surface de l'espace R, C, z, celle-ci étant susceptible de renseigner sur les variations de R en fonction de C, donc du diagramme des vitesses, et du nombre z des éléments en série.

Nous allons examiner cette surface en la coupant successivement au moyen de plans parallèles aux plans coordonnés, soit de plans

$$= ct$$
 $C = ct$ $R = ct$

III. Coupures de la surface $\varphi(R, C, z) = o$ par des plans z = ct (parallèles au plan coordonné R, C).

Dans ce cas z est choisi comme paramètre et l'ex-

pression de la surface convient sous la forme: $\frac{2z-1}{2z}CR + \left(\frac{1}{2z} + \zeta\right)R - \frac{1}{2}C - \left(\frac{1}{2} + \zeta\right) = 0.$ (7)

Cette relation montre que, pour toute valeur choisie de z, la dépendance entre R et C est représentée par une hyperbole dont le centre est

$$R = \frac{z}{2z-1} \dots C - \frac{1+2\zeta z}{2z-1} \dots (8)$$

Les assymptotes sont des droites parallèles aux axes coordonnées.

Si l'on observe que toutes les hyperboles signalées passent par le point R = 1 et C = 1, il devient évidemment très simple de tracer ces courbes en ayant uniquement recours aux procédés graphiques connus.

Dans la fig. 3 nous avons reproduit le lieu géométrique L₁ des centres des hyperboles de même qu'un

Fig. 5. Coupures par des plans R = const.de la surface $\varphi(R, C, z) = 0$.

02 0.4 06

> certain nombre de ces courbes. On remarquera que pour z = I l'hyperbole dégénère en une droite parallèle à l'axe des C, ce qui est d'ailleurs naturel puisque pour z = 1 on a $K_n = K'$ et $\eta_n = \eta'_t$.

> Cette fig. 3 a été établie, comme celles qui suivent du reste, en admettant $\zeta = 0,15$.

> Nous reviendrons sur les indications que fournit ce graphique en examinant l'ensemble des conclusions que permet l'étude de la surface $\varphi(R, C, z) = o$.

> IV. Coupures de la surface $\varphi(R, C, z) = o$ selon des plans C == constant (parallèles au plan coordonné R, z).

> Dans ce cas C est choisi comme paramètre et l'équation de la surface convient sous la forme:

> $2(C + \zeta)Rz - (I + 2\zeta + C)z - (C - I)R = 0$. (9) Cette équation est également celle d'une famille d'hyperboles dont les centres sont définis par:

$$z = \frac{C - \mathbf{I}}{2(\zeta + C)} \dots R = \frac{\mathbf{I} + 2\zeta + C}{2(\zeta + C)} \dots (\mathbf{I0})$$

Les assymptotes sont des parallèles aux axes coordonnés, comme dans le cas précédent.

Il convient de remarquer que, quelque soit la valeur de C, les hyperboles susdites passent par le point z = 1et R = 1, ce qui permet de tracer la courbe en chaque cas d'une façon analogue à celle mentionnée au sujet du cas visé par le paragraphe ci-dessus.

Dans la fig. 4 sont reproduites quelques hyperboles conformes à l'équation (9) et le lieu L_2 des centres définis par les relations (10).

V. Coupures de la surface $\varphi(R, C, z) = o$ par des plans R = constant (parallèles au plan coordonné z, C) qui déterminent des courbes de niveau.

L'équation de la surface est, dans ce cas, commode sous la forme:

 $[2R - I] z C + [2\zeta R - I - 2\zeta] z - RC + R = 0 \quad (II)$ Cette relation représente encore une famille d'hyperboles dont les centres sont définis par les égalités:

$$\underset{z=\infty}{\overset{g}{=}} \frac{R}{2R-1} \dots C \underset{C=\infty}{\overset{z}{=}} \frac{2\zeta R-1-2\zeta}{2K-1} \quad . \quad (12)$$

Les assymptotes sont ici, comme dans les cas précédents, des droites parallèles aux axes coordonnés.

0.8

SCHWEIZERISCHE BAUZEITUNG

Fig. 9. Courbes $C = f(\cos^2 \alpha_0)$ pour diverses valeurs du paramètre cos a1.

On remarquera, en vue de la construction graphique des courbes, que pour z = o on a C = I, quelle que soit la valeur de R; le point ainsi défini appartient à la branche de l'hyperbole qui ne présente pas d'utilité immédiate pour nos déterminations.

Dans la fig. 5 nous avons reproduit le lieu L_3 des hyperboles sus-mentionnées et quelques courbes, à titre d'exemple.

VI. Représentation générale de la surface $\varphi(R, C, z) = 0$. Pour bien mettre en évidence les propriétés des courbes que nous venons de déterminer, nous les avons reproduites dans l'espace à trois dimensions R, C, z, de façon que la surface $\varphi(R, C, z) = o$ résulte clairement.

La fig. 6, dans laquelle est tracée la surface en question, montre que pour une valeur choisie de C différente de l'unité, le rapport R augmente avec le nombre s des éléments en série. Cette augmentation est d'autant plus forte que la valeur de C est faible. Par contre elle est nulle lorsque C = I. Ceci s'explique par le fait que pour C = I on n'a de solution réelle de l'équation de définition de C que pour cos $\alpha_1 = 1$ avec, alors, $\frac{u}{c_1} = 1$. Dans ce cas le diagramme des vitesses dégénère en une droite, la vitesse absolue de sortie est nulle et il ne peut donc y avoir de récupération sous forme d'énergie cinétique. La seule récupération concevable est celle sous forme de chaleur (coefficient σ), laquelle n'apparait toutefois pas dans le rapport R. En effet celui-ci tient compte de η'_t , rendement dans lequel n'intervient pas le facteur de récupération o. Cette remarque nous amène encore à observer que pour toute valeur de $\cos \alpha_1$ différente de 1, il existe une valeur maximum de C, laquelle correspond justement à $\frac{u}{c} = \cos \alpha_1$.

Enfin, toujours dans le même ordre d'idées, on observera que le rapport R pour C = o n'a aucune signification réelle; avec C = o on a aussi bien η'_t que η_n nuls.

Cette même fig. 6 montre que les valeurs de R pour un nombre d'éléments donné augmentent lorsque C diminue. A ce propos il convient de remarquer que, nécessairement, pour z = I, le rapport R est aussi l'unité. Quant à l'augmentation signalée, on s'explique facilement par le fait que lorsque C diminue cela signifie que la vitesse absolue de sortie du fluide moteur augmente (toutes choses égales, bien entendu), ce qui entraîne une diminution du rendement individuel, mais, d'autre part, une augmentation de la récupération sous forme d'énergie cinétique.

Les courbes de niveau (R = ct) de la figure en question mettent bien en évidence la forme générale de la surface $\varphi(R, C, z) = o$ et montrent que le même rapport R peut être obtenu avec des valeurs de z différentes selon le choix que l'on fait de C, donc du diagramme des vitesses. Cela ne signifie naturellement pas que l'on atteindra ainsi les mêmes rendements globaux, mais uniquement que l'amélioration entre le rendement individuel et le rende-

VII. Application de la fonction $\varphi(R, C, z)$ = o à la détermination des rendements d'ailettages constitués par des profils d'aubes donnés.

Nous nous proposons maintenant d'utiliser les résultats qui précédent à l'étude du problème que nous allons énoncer au sujet de la détermination des rendements telle qu'elle doit être faite au point de vue constructif.

Problème. — Etant donné un profil d'aubage type Parsons défini par les directions des vitesses absolues d'entrée et de sortie de la vapeur pour le distributeur (ou, ce qui est identique, par les directions des vitesses relatives d'entrée et de sortie de la vapeur pour les aubes mobiles), déterminer le rendement individuel η_n de la turbine élémentaire correspondante, le rendement global η'_t d'une suite d'éléments en série et, en général, toutes quantités utiles telles que chiffres caractéristiques, différences d'enthalpie disponibles, etc.

Un profil d'aubage Parsons est donné, ainsi qu'on vient de le rappeler, lorsque l'on connaît les angles a_1 et

 α_2 , respectivement les angles β_2 et β_1 qui sont reliés aux premiers par les égalités $\alpha_1 = \beta_2$ et $\alpha_2 = \beta_1$.

En effet la connaissance de ces deux angles détermine les directions d'entrée et de sortie des aubes comme le rappelle la fig. 7. La partie intermédiaire du profil, soit celle comprise entre les deux directions choisies, reste réservée à l'habileté du constructeur ou, plus exactement, doit être réalisée conformément à des données dont l'étude sort complètement du cadre de la présente recherche.

Sur la base des indications $MP = \cos \alpha_1 \quad NQ = \cos \alpha_2$ de la fig. 7 ou, en général, du diagramme des vitesses de l'aubage Parsons, on obtient:

 $c_{2}^{2} - c_{2}^{2} - 2 u c_{2} \cos a + u^{2} = 0$

$$c_2^2 = c_1^2 - 2 u c_1 \cos a_1 + u^2 \quad \text{ou} \quad \frac{c_1^2}{c_1^2} = 1 - 0$$

En remplaçant dans cette dernière expression c2 par sa valeur, il résulte, après quelques transformations:

$$C = \frac{\cos^2 \alpha_1 - \cos^2 \alpha_2}{\cos^2 \alpha_1 - \cos^2 \alpha_2}$$

 $C \cos^2 \alpha_2 - C - \cos^2 \alpha_2 + \cos^2 \alpha_1 = 0.$ (14) qui est l'équation d'une famille d'hyperboles si l'on considère $\cos^2 \alpha_1$ comme paramètre.

Cette famille d'hyperboles est représentée à la fig. 8 par la surface dans l'espace C, $\cos^2 \alpha_1$, $\cos^2 \alpha_2$, qui la contient et, à la fig. 9, par les projections correspon-dantes dans le plan C, $\cos^2 \alpha_2$. Nous avons, dans ces deux figures, tracé les graphiques tels qu'ils résultent des relations qui ont servi de base à leur établissement, soit, en particulier, avec les carrés des cosinus comme coordonnées, car le but poursuivi en cette notice est simplement l'étude de principe des problèmes posés. Pour les applications pratiques, il est naturellement plus commode d'avoir recours aux valeurs des cosinus qui peuvent se lire directement sur les diagrammes de vitesses si ceux-ci sont

¹) "Turbines à vapeur élémentaires à réaction^{*}. Technique Moderne, Paris. Janvier et février 1919.

Tay 4 az Q - cos a2 + cos a2 Fig. 7. Aube Parsons définie par les directions d'entrée et de sortie de la vapeur

 $OM = c_1 = 1$ ON = 1

 $MR = u/c_1$

convenablement tracés dans ce but (v. p. ex. la fig. 7). Au surplus, des méthodes graphiques de calcul peuvent être avantageusement utilisées ici: vu la nature spéciale de ces solutions, nous nous réservons de les examiner dans une recherche qui leur sera particulièrement destinée.

La connaissance de la surface de la fig. 8, respectivement des courbes de la fig. 9, permet la solution du problème posé en ce qui concerne les rendements.

En effet, pour des valeurs choisies de α_1 et de

 a_2 , ces deux graphiques — ou, ce qui revient au même, l'équation (13) — déterminent la valeur de C. D'autre part, la connaissance de C fournit au moyen de la surface $\varphi(R, C, z) = o$ de la fig. 6, ou des projections de la fig. 3 p. ex. pour toute valeur de z, celle correspondante de R. Il en est du reste de même de l'équation générale de la surface en question telle que donnée p. ex. par la relation (7). Pour z = 1 on obtiendra en outre la valeur de η_n telle que définie par l'équation (2), ce qui peut se faire aussi par l'intermédiaire des constructions graphiques exposées dans l'étude que nous avons citée en note au bas du paragraphe 6.

On aura donc immédiatement pour toute valeur de zle rendement η_t' en multipliant η_n par le rapport R correspondant à la valeur de la fonction C qui convient au profil choisi et au nombre z des éléments en série, nombre qui peut d'ailleurs se déterminer sur la base des calculs que nous allons exposer ci-dessous.

VIII. Chiffres caractéristiques et différences d'enthalpie utilisables.

Le chiffre caractéristique a été défini, d'une façon générale par la relation (5) qui peut s'écrire aussi:

$$k' = 4189 \frac{z \left(\frac{u}{c_1}\right)^2}{z \left(\zeta + C\right) + \frac{1}{2} \left(1 - C\right)} \quad . \quad . \quad (15)$$

Le numérateur de cette fraction peut, à son tour, se transformer comme suit. Sur la base du diagramme des vitesses on a

$$u = c_1 \cos \alpha_1 - c_2 \cos \alpha_2$$

ou encore

$$\frac{u}{c_1} = \cos \alpha_1 - \sqrt{1 - C} \cos \alpha_2 = \cos \alpha_1 - \sqrt{\frac{1 - \cos^2 \alpha_1}{1 - \cos^2 \alpha_2}} \cos \alpha_2 \quad (16)$$

Cette relation montre que l'on peut exprimer k' en fonction de $\cos \alpha_1$ et de $\cos \alpha_2$, donc aussi de C. Nous ne poursuivrons pas les transformations nécessaires à cet effet, car elles conduisent à des expressions assez compliquées et peu évidentes. Mais nous remarquons que pour z = 1 on a $k' = k_n$. Cette quantité se calculera facilement sur la base des relations (3), (13) et (16), ou en déterminant directement d'après les diagrammes de vitesses les rapports $\frac{u}{c_1}$ pour chaque cas particulier, donc en établissant séparément les valeurs du numérateur et du dénominateur de la fraction (15).

C'est en vue de ces déterminations que nous avons établi les fig. 10 et 11. Dans la première de celle-ci, on a représenté la surface $f\left(\frac{u}{c_1}, \cos \alpha_1, \cos \alpha_2\right) = 0$, tandis que la seconde reproduit les projections des courbes $\cos \alpha_1 = ct$ dans le plan coordonné $\frac{u}{c_1}$, $\cos \alpha_2$.

Fig. 10. Surface $f(u|c_1, \cos \alpha_1, \cos \alpha_2) = 0$.

Fig. 11. Courbes $u/c_1 = f(\cos \alpha_2)$ pour $\cos \alpha_1$ choisi comme paramètre.

Il est évidemment aisé maintenant, pour toutes valeurs de α_1 et de α_2 , de déterminer k_n , puisque nous connaissons $\frac{u}{c_1}$ et C en fonction

de ces deux valeurs. Il en résulte immédiatement k' pour un nombre a z quelconque d'éléments en série, puisque le rapport R est connu en fonction de z et de C.

Comme d'autre part, par définition, on a $k' = \frac{z u^2}{\sum \Delta i_a}$, on obtient aussi pour toutes les valeurs de u et de z $\frac{\sum \Delta i_a}{u^2} = \frac{z}{k'}$, ce qui définit la somme des différences d'enthalpie utilisables, laquelle est liée à la différence d'enthalpie disponible sur l'isentropique générale, qui correspondrait à la détente idéale le long de l'ailettage, par le coefficient de récupération sous forme de chaleur σ , soit par la relation que nous avons rappelée au début de ces lignes.

La somme cherchée se retrouve aussi immédiatement en observant que le dénominateur des relations (III) et (IV), respectivement (4) et (5) n'est pas autre chose que la somme des différences d'enthalpie utilisables divisées par c_1^2 . On a donc, en tenant compte de transformations semblables à celles qui ont conduit à la relation (15):

$$\frac{\sum \Delta i_a}{u^2} = \frac{\mathbf{I}}{4189} \left[z \left(\zeta + C \right) + \frac{\mathbf{I}}{2} \left(\mathbf{I} - C \right) \right] \frac{\mathbf{I}}{\left(\frac{u}{C} \right)^2} . \quad . \quad (17)$$

Numériquement cette quantité s'obtient de toute évidence très facilement, puisque le calcul de chacune des quantités qui interviennent dans son expression peut se faire en tenant compte uniquement des angles α_1 et α_2 , comme cela vient d'être rappelé ci-dessus. La seule donnée expérimentale indispensable est, comme pour tous les calculs analogues, le coefficient de perte ζ .

Il résulte de la dernière des relations notées que pour un profil d'aube donné le quotient de la somme des différences d'enthalpie utilisables sur le carré de la vitesse circonférentielle augmente linéairement avec le nombre d'éléments en série z.

A titre d'exemple pour $a_1 = 20^0$ $a_2 = 60^0$ $\zeta = 0,15$ on obtient

$$\frac{u}{1} = 0,743$$
 $C = 0,845$

et de là l'expression

$$4189 \frac{\Sigma \varDelta i_a}{u^2} = 1,8z + 0,1405$$

qui est évidemment l'équation d'une droite. Au moyen de cette relation il est possible de choisir rapidement les deux données essentielles dans le calcul d'un ailettage, soit la vitesse circonférentielle u et le nombre des éléments en série z pour une valeur donnée de la somme des différences d'enthalpie utilisables, somme que l'on peut au surplus toujours évaluer, sans crainte de commettre une erreur importante, en partant de la valeur de Δi_0 .