**Zeitschrift:** Schweizerische Bauzeitung

**Herausgeber:** Verlags-AG der akademischen technischen Vereine

**Band:** 99/100 (1932)

**Heft:** 23

**Artikel:** Die Wild'schen photogrammetr. Instrumente

**Autor:** Vuille, E.

**DOI:** https://doi.org/10.5169/seals-45599

# Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

## **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 13.07.2025

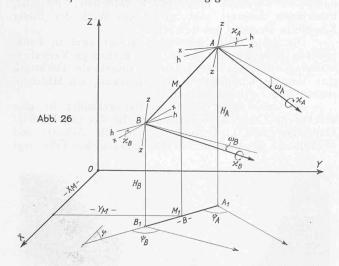
ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

zudem eine Gartenhalle mit Garagen für Autos und Fahrräder, während für die Fahrzeuge der Klienten in der Nähe des Haupteinganges ein Parkplatz geschaffen ist.

Am 6. November 1930 wurde mit dem Abbruch des die Baustelle einnehmenden alten Herrschaftshauses begonnen. Die eigentlichen Bauarbeiten nahmen am 15. Dezember 1930 ihren Anfang und am 21. März 1932, am Frühlingsanfang, wurden die Schalter geöffnet. Die Baukosten pro m³ umbauten Raumes belaufen sich auf Fr. 84,40, inbegriffen alle Tresoreinrichtungen wie Safes, Panzertüren, Kassen- und Kartothekschränke.

# Die Wild'schen photogrammetr. Instrumente.

Von Dipl. Ing. E. VUILLE, Abteilung für Landestopographie, Bern.


(Fortsetzung statt Schluss von Seite 285.)

D) DIE HERSTELLUNG DER AUSGANGSLAGE DES AUTO-GRAPHEN FÜR DIE AUFNAHMEFÄLLE DER TERRESTRISCHEN UND AEROPHOTOGRAMMETRIE.

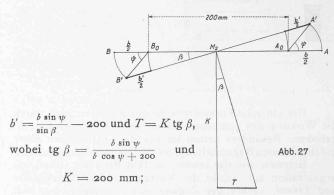
Als "Ausgangslage" des Autographen wird jene Stellung des Gerätes bezeichnet, bei der die Elemente der innern Orientierung und die bei der Aufnahme erhobenen Elemente der äussern Orientierung eingestellt sind.

Die drei Elemente der innern Orientierung werden derart berücksichtigt, dass man am Autographen die der Aufnahmekammer identischen Messkammern einsetzt, d. h. den drei Aufnahmetypen entsprechend, zwei "kleine" Auswertekammern mit 161 mm Brennweite, bezw. zwei "grosse" (mit 237 mm) für die Auswertung von terrestrischen Aufnahmen, oder für die Auswertung von Fliegeraufnahmen zwei Auswertekammern mit 165 mm Brennweite. Die Brennweite jeder Auswertekammer kann durch axiale Verschiebung des Objektives in der Fassungshülse der Brennweite der entsprechenden Aufnahmekammer identisch gemacht werden.

Was die äussere Orientierung anbetrifft, können wir am Autographen nicht alle in unseren Darlegungen über das allgemeine Problem der Photogrammetrie angegebenen zwölf Elemente  $X_1$ ,  $Y_1$ ,  $Z_1$ ,  $X_2$ ,  $Y_2$ ,  $Z_2$ ,  $\varphi_1$ ,  $\varphi_2$ ,  $\omega_1$ ,  $\omega_2$ ,  $\varkappa_1$  und  $\varkappa_2$  unmittelbar einstellen. Mit Rücksicht auf den Bau des Autographen müssen wir diese ursprünglichen zwölf Elemente zum Teil durch andere am Auswertungsgerät einstellbare, von einander unabhängige Elemente ersetzen.



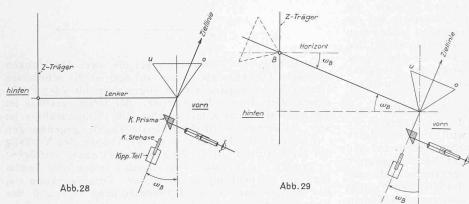
Es sei in der Abb. 26 A—B die Aufnahmebasis im Raume des Koordinatensystems X-Y-Z des Geländes. Die zwölf Elemente der äussern Orientierung des Aufnahmepaares sind auch eindeutig bestimmt durch:  $X_{\rm M},\,Y_{\rm M},\,\varphi,\,B,\,H_{\rm B},\,H_{\rm A},\,\,\psi_{\rm A},\,\,\psi_{\rm B},\,\,\omega_{\rm A},\,\,\omega_{\rm B},\,\,\varkappa_{\rm A}\,\,$  und  $\varkappa_{\rm B}.\,$  Am Autographen selbst werden die neun letzten Elemente der äussern Orientierung eingestellt; wir können sie wie folgt ausdrücken: B,  $H_{\rm B},\,\Delta\,H=H_{\rm A}-H_{\rm B},\,\,\psi_{\rm A},\,\,\gamma=\psi_{\rm B}-\psi_{\rm A},\,\,\omega_{\rm A},\,\,\Delta\,\omega=\omega_{\rm B}-\omega_{\rm A},\,\,\varkappa_{\rm A}\,\,$  und  $\varkappa_{\rm B}.\,\,$  Die drei andern Elemente  $X_{\rm M},\,\,Y_{\rm M}\,\,$  und  $\varphi$ 


ergeben die Orientierung der Orthogonalprojektion des Aufnahmesystems in der X-Y-Ebene; sie entsprechen der Orientierung des Kartenblattes auf dem Zeichentisch.

Die Herstellung der Ausgangslage des Autographen erfolgt immer von der Nullstellung der Abb. 23 aus. Der Autograph weist eine Anzahl von Trommeln auf, die die Einstellung obiger neun Elemente gestatten; in der Nullstellung des justierten Autographen sind die Ablesungen an allen Trommeln gleich Null. Wir werden nun sehen wie die Werte obiger neun Elemente zur Herstellung der Ausgangslage in den verschiedenen Aufnahmefällen am Autograph eingestellt werden. Bei jedem Aufnahmefall werden wir, von der Nullstellung ausgehend, nur diejenigen Elemente einstellen müssen, deren Werte  $\neq$ 0 sind.

Wir behandeln zunächst die Aufnahmefälle der terrestrischen Photogrammetrie:

a) Normalfall. Aufnahmeelemente: B,  $H_B$  und  $\varDelta$  H; die andern sechs Elemente sind gleich Null. Wir haben diesen Fall bereits behandelt und gesehen, dass wir zur Herstellung der Ausgangslage folgende Werte einstellen müssen:  $\frac{b}{2}$  an jeder Basistrommel für b',  $h_B$  am Z-Zählwerk beim horizontierten Lenker  $L_B$  und bz an der Basistrommel für bz (Abb. 18).


b) Verschwenkungsfall. (Kammeraxen beider Stationen parallel verschwenkt). Aufnahmeelemente: B,  $H_{\rm B}$ ,  $\Delta$  H und  $\psi$ ; die andern fünf Elemente sind gleich Null. Der Verschwenkungsfall wird durch Einführen einer Ersatzbasis zum Normalfall zurückgeführt. Im Bezugsystem des Autographen wird die Basis b um den Verschwenkungswinkel  $\psi$  gedreht. Zu diesem Zweck wird das Kupplungsglied um die Vertikalaxe M des Z-Trägers (Abb. 27) mit Hılfe einer Tangentenschraube gedreht. Da aber in der Nullstellung die Punkte  $A_0$  und  $B_0$  im Konstruktionsabstand von 200 mm liegen, dürfen wir nicht etwa das Kupplungsglied um den Winkel  $\psi$  drehen. Abb. 27 ergibt uns die Einstellelemente b' und T in Funktion der bekannten Grössen b und  $\psi$  zu:



Einstellungen zur Herstellung der Ausgangslage:  $\frac{b'}{2}$  und bz =  $\Delta$  h an den Basistrommeln, h<sub>B</sub> am Z-Zählwerk und T an der Verschwenkungstrommel (Abb. 23).

c) Konvergenzfall. Wir nehmen an, dass die Kammeraxen der Stationen A und B um ψ<sub>A</sub> resp. ψ<sub>B</sub> gegenüber der Basis verschwenkt sind, wobei  $\psi_{\text{A}} \neq \psi_{\text{B}}$ . Die Konvergenz ist  $\psi_B - \psi_A = \gamma$ . Die Aufnahmeelemente sind B, H<sub>B</sub>,  $\Delta$  H,  $\psi_A$  und  $\gamma$ ; die andern vier Elemente sind gleich Null. Am Autograph wird die Verschwenkung  $\psi_{\mathrm{A}}$  der Kammeraxe der Station A als gemeinsame Verschwenkung beider Kammeraxen, unserm Fall b) entsprechend, eingestellt. Die Konvergenz γ wird durch Drehung des Ablenkungsprismas eingeführt, welches das aus dem Kammerprisma der Kammer B kommende Parallelstrahlenbüschel der zugehörenden Fernrohrhälfte zuführt. Dieses Ablenkungsprisma wird deshalb Konvergenzprisma genannt (Abb. 23). Die Drehung des Konvergenzprismas erfolgt um eine zur Stehaxe der Kammer B parallele Axe mittels einer Tangentenschraube. Da eine Drehung des Prismas eine Ablenkung des Strahles um den doppelten Betrag des Drehwinkels zur Folge hat, müssen wir das Prisma um  $\frac{\gamma}{2}$  schwenken. Wir müssen dabei die sog. Führungsplatte der Korrekturvorrichtung des Plattenträgers um den Winkel  $\gamma$  im entgegengesetzten Sinne schwenken. Die Einstellelemente für die Ausgangslage sind:  $\frac{b'}{2}$  und bz an den Basistrommeln, h<sub>B</sub> am Z-Zählwerk, T an der Verschwenkungstrommel, t und  $\gamma' = \gamma$  an den Konvergenzschrauben a und b (s. Abb. 18).

d) Normalfall mit gekippten Aufnahmen. Es seien die Kammeraxen im Moment der Aufnahme um  $\omega_A$  (Kammer A) und um  $\omega_B$  (Kammer B) gekippt.  $\Delta \omega = \omega_B - \omega_A$  ist die Differenzkippung der Kammeraxen. Die Aufnahmeelemente sind: B, H<sub>B</sub>,  $\Delta$  H,  $\omega_B$  und  $\Delta$   $\omega$ ; die andern vier Elemente sind gleich Null. Am Autographen wird die sog. allgemeine Kippung  $\omega_B$  durch Kippen des "kippbaren Teiles" um die Haupt-X-Axe um den entsprechenden Winkelbetrag  $\omega_B$  eingeführt. Die Stehaxen, die Kammerprismen, die Platten der Korrekturvorrichtungen beider Kammern und das gesamte Betrachtungssystem werden bei der Kippung mitgenommen; die Bildträger und Lenker bleiben hingegen unbeweg-



lich (Abb. 28). Um die optische Axe der Kammer in die Ziellinie zu bringen, müssen wir nachträglich das System Lenker-Kammer um ω<sub>B</sub> nach aufwärts kippen (Abb. 29). Gegenüber dem Horizont durch den Standort B nimmt dabei der Lenker die Neigung der Kammeraxe bei der Aufnahme ein (Abb. 29). Da aber die Kammer A bei der Aufnahme um den Winkel  $\omega_{\text{A}}\!
eq\!\omega_{\text{B}}$  gekippt war, müssen wir die am Autographen eingestellte gemeinsame Neigung  $\omega_{\mathrm{B}}$ des "kippbaren Teiles" für die Kammer A allein um den Beträg der Differenzkippung  $\varDelta$   $\omega$  korrigieren. Dies geschieht durch Kippen des rechten Ablenkungsprismas, des sogen. Differenzkippungsprismas (Diff. Kipp. Pr. in Abb. 23), der Stehaxe der Kammer A und der Platte der Korrekturvorrichtung dieser Kammer um eine zur Hauptkippaxe parallele Axe um den Winkelbetrag Δω. Die Einstellelemente der Ausgangslage im Normalfall mit gekippten Kammeraxen sind also:  $\frac{b}{2}$  und bz an den Basistrommeln, h<sub>B</sub> am Z-Zählwerk, allgemeine Kippung  $\omega'_B = \omega_B$  an der Kippschraube (Abb. 23) und  $\Delta \omega' = \Delta \omega = \omega_B - \omega_A$  an der Differenzkippungsschraube d (Abb. 18).

e) Im Verschwenkungsfall mit gekippten Kammeraxen würden wir für die Einstellelemente der Ausgangslage erhalten:  $\frac{b'}{2}$  und bz, h<sub>B</sub> am Z Zählwerk, T,  $\omega'_{\rm B} = \omega_{\rm B}$  und  $\Delta \omega' = \Delta \omega = \omega_{\rm B} - \omega_{\rm A}$ .

f) Konvergenzfall mit gekippten Kammeraxen. Aufnahmeelemente: B, H<sub>B</sub>,  $\Delta$  H,  $\psi_A$ ,  $\psi_B$  ( $\gamma = \psi_B - \psi_A$ ),  $\omega_B$  und  $\omega_A$  ( $\Delta \omega = \omega_B - \omega_A$ );  $\varkappa_A = \varkappa_B = o$ . Die Basiselemente b', h<sub>B</sub>, T und bz werden wie im Falle e) eingestellt. Was die Einstellung der Konvergenz  $\gamma$  und der Kippung  $\omega_B$  anbetrifft, dürfen wir am Autographen infolge gleichzeitigen Auftretens beider Elemente nicht mehr die gemessenen Werte  $\gamma$  und  $\omega_B$  einführen. Ferner tritt durch die Einstellung der Konvergenz und Kippung eine optische Ver-

kantung des Bildes der Kammer B auf, die wir durch Kantung des Bildträgers beseitigen müssen. Wir können hier auf die besondern Verhältnisse dieses Aufnahmefalles nicht näher eintreten und verweisen auf F. Baeschlin: "Zur Theorie des Wild'schen Autographen", Zeitschrift für Verm. und Kult., Juni 1929. Prof. Baeschlin leitet die am Autographen einzustellenden Werte von  $\gamma'$ ,  $\omega'_{\rm B}$  und  $\varkappa'_{\rm B}$  ab und kommt zu folgenden Formeln:

 $\operatorname{tg} \omega' = \frac{\operatorname{tg} \omega}{\cos \gamma}; \ \sin \gamma' = \sin \gamma \ \cos \omega; \ \operatorname{tg} \varkappa'_{B} = \operatorname{tg} \gamma \ \sin \omega.$ 

Die zur Herstellung der Ausgangslage des Autographen in unserem letzten Aufnahmefall notwendigen Einstellelemente sind folglich:  $\frac{b'}{2}$  und bz, h<sub>B</sub> am Z-Zāhlwerk, T, t' und  $\gamma' \not= \gamma$ ,  $\omega'_B \not= \omega_B$ ,  $\Delta \omega' = \omega'_B - \omega_A$  und  $\varkappa'_B$  an der Verkantungsschraube c (s. Abb. 18) der Kammer B.

Die Herstellung der Ausgangslage des Autographen bei der *Aerophotogrammetrie* ist, je nachdem es sich um Schräg- oder Steil-Aufnahmen handelt, verschieden.

a) Konvergente Schrägaufnahmen. Aufnahmeelemente, für die der Flugzeugbeobachter nur grobe Näherungs-

werte angeben kann: Basislänge B, Flughöhe H, mittlere Aufnahmedistanz E und allgemeine Kippung ω. Aus diesen Elementen kann die genäherte Konvergenz y der Aufnahmeaxen abgeleitet werden. Dieser Aufnahmefall ist obigem Falle f) der terrestrischen Photogrammetrie ähnlich. Von einer genauen Berechnung der einzustellenden Werte  $\omega'$ ,  $\gamma'$  und  $\varkappa'_B$  nach den Formeln des Falles f) wird hier abgesehen, da die Aufnahmeelemente  $\omega$  und  $\gamma$  sehr unsicher sind und die genauen Werte dieser Elemente beim

Einpassen des Plattenpaares nachträglich am Autographen bestimmt werden. Als Elemente der Ausgangslage werden wir, von der Nullstellung des Autographen ausgehend, folgende Werte einstellen:  $\frac{b}{2}$  an jedem Basisschlitten, h am Z-Zählwerk, E=Y an der Y-Skala durch Verstellen des Y-Wagens, die approximative Konvergenz  $\gamma$  an den Schrauben a und b und  $\omega'=\omega$  an der Kippungsschraube.

b) Konvergente Steilaufnahmen. Der Flugzeugbeobachter gibt folgende Näherungswerte der Aufnahmeelemente an: Basislänge B, Flughöhe H (für beide Aufnahmen gleich angenommen) und Konvergenz  $\gamma$  der Aufnahmeaxen nach der Einstellung an der Aufhängevorrichtung.

Zur Herstellung der Ausgangslage des Autographen müssen bei den Steilaufnahmen folgende Verhältnisse berücksichtigt werden. Während die Plattenkoordinaten x und z der terrestrischen und der Schräg-Aufnahmen sich auf die Lageordinaten X bezw. auf die Höhen Z des photographierten Geländes beziehen, ist bei den Steilaufnahmen die Platte annähernd parallel zur Kartenebene X-Y. Die Plattenkoordinaten x und z entsprechen also bei den Steilaufnahmen den Koordinaten der Projektionsebene X-Y. Die Kippbewegungen der Lenker werden bei den Steilaufnahmen nicht mehr den Höhen Z, sondern den Ordinaten Y des Grundrisses entsprechen. Wir müssen deshalb die Z-Bewegungen des Höhenschlittens mit der Y Bewegung des Zeichenstiftes kuppeln. Es ist ferner aus praktischen Gründen vorteilhafter, der Fusscheibe auch bei den Steilaufnahmen die Einstellung der Höhen zuzuteilen. Wir müssen deshalb die Betätigung der Y- und Z-Bewegungen des Autographen vertauschen. Nach diesen Umstellungen werden das linke Handrad die X-Bewegungen des Autographen und des Zeichenstiftes (wie bei der terrestrischen Auswertung), das rechte Handrad die Z. Bewegungen des Autographen und die Y-Bewegungen des

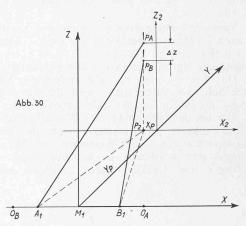
Zeichenstiftes und schliesslich die Fusscheibe die Y-Bewegungen des Autographen bezw. die Höheneinstellung bewerkstelligen. Die Höhen werden also nicht mehr am Z-Zählwerk, sondern am Y-Zählwerk des Autographen abgelesen. Die Einstellungen für die Ausgangslage des Autographen sind in diesem Aufnahmefall folgende:  $\frac{b}{2}$  an jeder Basistrommel für b', Flughöhe h am Y-Zählwerk mit entsprechender Stellung des Y-Wagens, die Konvergenzelemente t' und  $\gamma'$  an den Konvergenzschrauben a und b und die gegenseitige Vertauschung der Y- und Z-Bewegungen durch Umkuppeln der entsprechenden Zahnräder an der X-Leitwelle (Abb. 18).

#### E) DAS EINPASSEN EINES BILDPAARES AM AUTOGRAPHEN.

Darunter verstehen wir die Gesamtheit der Operationen, die nach der Herstellung der Ausgangslage bis zum Beginn der eigentlichen Auswertung, teils am Autographen, teils am Zeichentisch und teils durch Berechnungen vorgenommen werden müssen. Ein Plattenpaar ist am Autographen eingepasst, wenn beim sukzessiven Aufsetzen der Messmarke im Raummodell auf die Signale der sog. Einpasspunkte (koordinatenmässig bekannte Punkte der Triangulation und Kontrollpunkte), der Zeichenstift auf die Lage dieser in der Kartenebene aufgetragenen Punkte genau zeigt, und die am Autographen abgelesenen Höhen mit den Meereshöhen dieser Punkte übereinstimmen. Im allgemeinen Fall der Aerophotogrammetrie entspricht das Einpassen eines Plattenpaares am Autographen der optisch-mechanischen Lösung der Doppelpunkteinschaltung im Raum.

Am Autograph erfolgt die Lösung des Problems nach der in unserer Einleitung (Seite 194 lfd. Bd.) angegebenen Methode von Prof. v. Gruber. Es wird zunächst durch gegenseitige Orientierung der beiden Strahlenbüschel ein Raummodell des Geländes in einem den Näherungswerten der Basiselemente entsprechenden genäherten Masstab hergestellt; sodann wird der Masstab des Modells berichtigt und schliesslich wird die absolute Orientierung des Modells im Koordinatensystem des Auswertegerätes durch drei

Translationen und drei Rotationen bewerkstelligt. Im Nachfolgenden behandeln wir kurz das Einpassen


von Luftbildpaaren bei Schräg- und Steilaufnahmen und

von terrestrischen Aufnahmen als Spezialfall.

a) Einpassen eines Bildpaares von konvergenten Schrägaufnahmen. Die Ausgangslage des Autographen zum Einpassen des Bildpaares ist durch Einstellung der vom Flugzeugbeobachter angegebenen Näherungswerte der Basislänge, der Flughöhe, der Konvergenz und der allgemeinen Kippung hergestellt worden. Die andern Elemente der äussern Orientierung können vom Flugzeugbeobachter nicht angegeben werden und werden deshalb bei der Herstellung der Ausgangslage nicht berücksichtigt. In der Ausgangslage sind infolgedessen die zwei Bilder gegenseitig nicht ori-entiert; auch entspricht der eingestellte Näherungswert der Basislänge einem Näherungsmasstab des Modells und schliesslich ist die absolute Orientierung des Modelles unbekannt.

a) Wir müssen zunächst die gegenseitige Orientierung des Plattenpaares, d. h. ein parallaxfreies Raummodell des aufgenommenen Geländes herstellen. Es seien in der Abb. 30, unserer Abb. 25 entsprechend, M1 der geometrische Standort des Beobachters am Autographen, X, Y und Z die Axen des Koordinatensystems des Autographen, OA und OB die Drehpunkte der Messkammern und A1-B1 die durch den Standort M<sub>1</sub> und in die X-Axe des Autographen verlegte fingierte Aufnahmebasis (wie in Abb. 25). Da sich die zusammengehörenden Strahlen A1 pA und B<sub>1</sub> p<sub>B</sub> im Auswerteraum wegen der fehlerhaften gegenseitigen Orientierung nicht schneiden, werden die gleichzeitig auf die Abbildungen pA und pB eingestellten Messmarken mA und mB des Betrachtungsdoppelfernrohres nicht zusammenfallen. Durch Verschiebung der Wagen des Kreuzschlittensystems werden wir jedoch eine solche Lage des Basisgliedes finden, bei der die zwei Bildpunkte pA und pB des Objektpunktes P mit den entsprechenden

Messmarken in der gleichen Vertikalen erscheinen. Der Punkt P<sub>2</sub> ist der Schnittpunkt der Horizontalprojektionen der Strahlen A<sub>1</sub> p<sub>A</sub> und B<sub>1</sub> p<sub>B</sub> und die Punkte p<sub>A</sub> und p<sub>B</sub> sind die Durchstosspunkte der Strahlen durch die Vertikalebene  $X_2 Z_2$  durch  $P_2$ . Der virtuelle Vertikalabstand  $\Delta z$ zwischen beiden Durchstosspunkten wird Höhenparallaxe genannt. So lange die Messkammern gegenseitig nicht richtig orientiert sind, tritt die Höhenparallaxe bei den




Einstellungen der Messmarken auf die zwei Abbildungen beliebiger Objektpunkte immer auf und ist die scheinbare Grösse der Höhenparallaxe im allgemeinen für jeden Punkt verschieden. Durch das Auftreten der Höhenparallaxe ist der stereoskopische Effekt gestört. Die Höhenparallaxe ist aber ein wertvolles Mittel zur Herstellung der gegenseitigen Orientierung der Messkammern. Wir können den Vorgang der gegenseitigen Orientierung hier nicht näher verfolgen; es genügt uns zu wissen, dass durch systematische Aenderung der Höhenkomponente  $b_z$ , der Verschwenkung  $\psi_A$ , der Konvergenz  $\gamma$ , der Differenzkippung  $\Delta \omega$  und der Kantungsdifferenz An die Höhenparallaxe für sämtliche Punkte des Raummodelles beseitigt werden kann. Diese fünf Bewegungen  $b_z$ ,  $\psi_A$ ,  $\gamma$ ,  $\varDelta \omega$  und  $\varDelta \varkappa$  am Autographen entsprechen den fünf Elementen der gegenseitigen Orientierung. Wir verweisen diesbezüglich auf die Abhandlung von M. Zeller "Stereophotogrammetrie . . . . , II. Teil, Luftphotogrammetrie" (s. Literaturverzeichnis). Im Moment, wo in allen Punkten des Raummodelles die Höhenparallaxe eliminiert ist, werden sich sämtliche Strahlen beider Strahlenbüschel paarweise schneiden und wird der Beobachter am Autographen ein parallaxfreies Raummodell sehen. Die gegenseitige Orientierung ist somit hergestellt und es sind dadurch fünf Elemente bestimmt.

 $\beta)$  Wir müssen nun den Näherungsmasstab des Raummodelles durch Vergrösserung oder Verkleinerung der eingeführten Basislänge so ändern, dass das Raummodell den beabsichtigten Auswertemasstab aufweist. Zu diesem Zwecke werden wir zwei seitlich von einander möglichst entfernte Einpasspunkte des Modelles nacheinander stereoskopisch einstellen und aus den an den Zählwerken des Autographen abgelesenen Raumkoordinaten dieser Einpasspunkte die Raumdistanz D' zwischen beiden Einpasspunkten berechnen. Die wirkliche Raumdistanz D zwischen den entsprechenden Einpasspunkten im Objektraum können wir aus den gegebenen Raumkoordinaten dieser Punkte ermitteln. Der Quotient  $\frac{D}{D'}$  ergibt uns den Faktor, um den die am Autographen eingestellten Basiskomponenten bx, by (b' und T) und bz multipliziert werden müssen, damit das Raummodell den beabsichtigten Auswertemasstab aufweist. Nach Einführung der neuen Basiskomponenten bx', by' und bz' ist der Masstab des Raummodells berichtigt und somit das sechste Element m bestimmt.

γ) Schliesslich müssen wir zur Herstellung der absoluten Orientierung des Raummodelles im Koordinatensystem des Auswerteraumes die drei Rotationen  $\xi$ ,  $\eta$  und  $\xi$ und die drei Translationen 1x, 1y und 1z bewerkstelligen.

Die Rotationen  $\xi$  bezw.  $\eta$  des Modelles um die Xbezw. Y-Axe des Autographen werden folgendermassen ermittelt: Man stellt die Messmarke des Autographen der Reihe nach auf drei im Stereogramm möglichst weit voneinander liegende Einpasspunkte ein, kartiert jeweils diese Punkte mit dem Zeichenstift auf einem Blatt und notiert die Höhenablesungen am Z-Zählwerk. Es seien A, B und C (Abb. 31) die Kartierungen der mit dem Zeichenstift ge-



stochenen Projektionen der drei Einpasspunkte,  $\Delta h_a$ ,  $\Delta h_b$  und  $\Delta h_c$  die Verbesserungen, die an den Ablesungen am Z-Zählwerk anzubringen sind, um die gegebenen Meereshöhen der Einpasspunkte zu erhalten. Durch die Punkte A und B werden die Parallelen zur X- bezw. Y-Axe des Autographen gezogen. Auf den Seiten  $\overline{BC}$  und  $\overline{AC}$  können wir die Höhenverbesserungen  $\Delta h_d$  und  $\Delta h_c$  der Schnittpunkte D und E interpolieren. Die am Autographen auszuführenden Drehungen  $\xi$  und  $\eta$  ergeben sich aus der Abbildung zu:

$$\operatorname{tg} \xi = \frac{A h_c - A h_b}{BE}$$
 und  $\operatorname{tg} \eta = \frac{A h_d - A h_a}{AD}$ 

Die Rotation ξ um die X-Axe entspricht einer allgemeinen Zusatzkippung  $\xi$  und wird durch Kippung  $\xi$  des "kippbaren Teiles" bewerkstelligt. Da das Basisglied nicht mitgekippt wird, müssen die Basiskomponenten by<sub>1</sub> (b'<sub>1</sub> und T<sub>1</sub>) und bz, nachgestellt werden. Die neuen Einstellungen  $by_2$  ( $b'_2$  und  $T_2$ ) und  $bz_2$  lassen sich in Funktion der Werte by<sub>1</sub>, bz<sub>1</sub> und  $\xi$  berechnen. Die andern Elemente  $\gamma$ ,  $\Delta \omega$ ,  $\varkappa_A$  und  $\varkappa_B$  sind durch die Kippung  $\xi$  nicht beeinflusst. Nach der Drehung  $\xi$  des kippbaren Teiles um die X-Axe und entsprechenden Einstellungen b2', T2 und bz2 müssen die gegenseitige Orientierung und der Masstab des Raummodelles bestehen bleiben. Die Rotation n um die Y-Axe kann nicht so einfach erfolgen, weil eine gemeinsame Drehung der Kammern um die Y-Axe nicht möglich ist. Bei der Drehung  $\eta$  müssen alle Einstellungen am Autographen geändert werden. Wir können hier auf die Ermittlung der Aenderung der Einstellelemente des Autographen infolge Drehung  $\eta$  nicht näher eintreten und verweisen auf die schon angegebene Abhandlung von M. Zeller. Nach der Rotation  $\eta$  muss das Raummodell wiederum parallaxfrei sein und den richtigen Masstab aufweisen.

Wir können nun die  $Translation \ \Delta z$  dadurch bewerkstelligen, dass wir nach der Einstellung der Messmarke auf einen Einpasspunkt die Meereshöhe des Punktes am Z-Zählwerk eindrehen.

Wir müssen endlich das Kartenblatt auf dem Zeichentisch schieben —  $Translation \ \Delta x \ und \ \Delta y$  — und drehen —  $Rotation \ \xi$  — bis der Zeichenstift auf am zwei Autographen stereoskopisch eingestellte Einpasspunkte zeigt. Man stellt zunächst einen Einpasspunkt mit der Messmarke ein und schiebt das Kartenblatt um  $\Delta x$  und  $\Delta y$  bis der entsprechende Einpasspunkt der Karte unter dem Zeichenstift liegt. Sodann wird ein zweiter Einpasspunkt des Raummodelles mit der Messmarke eingestellt und das Kartenblatt um den ersten Einpasspunkt gedreht, bis der zweite Einpasspunkt der Karte unter den Zeichenstift zu liegen kommt. (Schluss folgt.)

# MITTEILUNGEN.

Die Gesetzmässigkeit der Abflussmengen von Wasserläufen. Zur Vorausberechnung der Dauerkurve der Abflussmengen von Wasserläufen hat R. Gibrat, beratender Ingenieur der Société Générale d'Entreprises (Paris), mit Hülfe der Wahrscheinlichkeitsrechnung eine Berechnungsmethode ausgebildet, die neben dem Gauss'schen Wahrscheinlichkeitsintegral noch einer Zusatzformel für die dabei zu benutzende Dispersionskonstante bedarf. Nachdem er bereits in der "Revue générale de l'Electricité" vom 14. Mai 1932 eine erste Anwendung dieser Berechnungsweise gab, zeigt er in den Nummern vom 15. und vom 22. Oktober 1932 der selben Zeitschrift, wie im besondern auch die Wahrscheinlichkeit des Eintreffens aussergewöhnlicher Hochwasser zu ermitteln ist; gestützt auf eine solche Berechnung lassen sich dann die Inhalte der Retentionsbecken einigermassen zuverlässig feststellen. Das interessante Beispiel, an dem die neue Berechnungsart gezeigt wird, betrifft die Wassermengen der Truyère, an der die hier, auf S. 127 von Bd. 99 (am 5. März 1932) und auf S. 226\* von Bd. 100 (am 22. Oktober 1932), bereits gewürdigten grossen Kraftwerke Sarrans und Brommat liegen. Während die Gauss'sche Funktion für sich allein die gegenseitige Unabhängigkeit von Einzelereignissen voneinander bedingen würde, postuliert die von R. Gibrat verwendete Zusatzformel eine gesetzmässige relative Abhängigkeit derselben. Ihren, eine universale Gültigkeit beanspruchenden Inhalt hat er im "Gesetz der proportionalen Wirkung" formuliert und schon auf den verschiedensten Gebieten der sog. Zufallserscheinungen bestätigt gefunden, insbesondere auch auf dem Gebiete der Regenmengenmessung, dessen Bedeutung für die Untersuchung des Verlaufs der Abflussmengen von Wasserläufen evident ist. An den von 1851 bis 1930 vorliegenden Beobachtungen der Regenmess-Station in Cahors liess sich die Brauchbarkeit des genannten "Gesetzes" gut nachweisen. Mit diesem berechnete er nun das Risiko des Eintreffens ausserordentlicher Hochwasser der Truyère für verschiedene, als normal angenommene ordentliche Hochwassermengen als Ausgangswerte. Weiter wurden die Rechnungsgrundlagen auch noch dazu benützt, um den Speicherinhalt des Retentionsbeckens der Zentrale Sarrans für vorgeschriebene Mengen abzugebender elektrischer Energie festzustellen.

Torsionskritische Drehzahlen von Flugmotoren. Zur raschen Berechnung der torsionskritischen Drehzahlen von mehrzylindrigen Verbrennungs-Kraftmaschinen hat A. Gorfinkel eine halbempirische Formel aufgestellt und zeigt nun deren Anwendung auf die heute hauptsächlich benutzten Typen von Flugmotoren in "Génie civil" vom 8. und 15. Oktober 1932. Nach dieser Formel findet man die kritische Drehzahl i-ter Ordnung, indem man die aus den Massen und Elastizitäten berechnete und durch i geteilte Eigenschwingungszahl multipliziert mit der Wurzel aus einem Bruch, dessen Nenner eine einfache Funktion der Zylinderzahl ist. Für Flugmotoren verschiedener Provenienz von 100 bis 500 PS variiert die Eigenschwingungszahl wenig und liegt bei etwa 30 000 Uml/min, wenn die Zylinder in einer Reihe, bei etwa 36 000 Uml/min, wenn die Zylinder im Stern angeordnet sind; für Zylinderanordnungen nach den Schemata V und W liegt die Eigenschwingungszahl meist unter 30 000 Uml/min. Bei Viertaktbetrieb sind die Ordnungszahlen sowohl ganzzahlig, als auch je halb so gross; bei Zweitaktbetrieb sind nur ganzzahlige Ordnungszahlen möglich. Bei Uebersetzungen mit unelastischem, durch Zahnräder bewirktem Spiel ergeben sich rechnungsmässig ebenfalls angebbare Abweichungen. Aus der Zusammenstellung der für alle üblichen Typen von Flugmotoren vorausberechneten kritischen Drehzahlen erwähnen wir, dass beispielsweise für Mehrzylinderanordnungen in einer Reihe die Zylinderzahl vier kritische Drehzahlen mit Resonanzcharakter bei 2370, 2100 und 1580 Uml/min ergibt. Auch zur Abschätzung der Grösse der Amplituden der Torsionsschwingungen wird eine Formel mitgeteilt, mit deren Hülfe die üblichen Typen von Flugmotoren verglichen werden. Für den Motorenbau lassen sich auf Grund der Nachrechnungen einige allgemeine praktisch wichtige Regeln ableiten. Es ist nämlich empfehlenswert, die Steuerung, die Nebenbetriebe und den Luftkompressor möglichst nahe beim Propeller anzuordnen; zur günstigen Beeinflussung der Höhe der Schwingungsamplituden ist dem Zeitpunkt der Zündung, sowie der Stellung der Kurbelwinkel eine besondere Aufmerksamkeit zu schenken.