# Wissenschaftliche Arbeitstagung für Kältetechnik, Zürich

Autor(en): [s.n.]

Objekttyp: Article

Zeitschrift: Schweizerische Bauzeitung

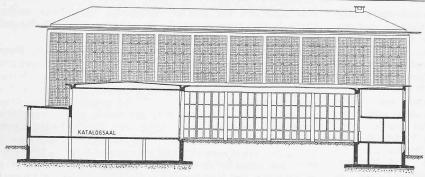
Band (Jahr): 70 (1952)

Heft 22

PDF erstellt am: **11.07.2024** 

Persistenter Link: https://doi.org/10.5169/seals-59617

#### Nutzungsbedingungen

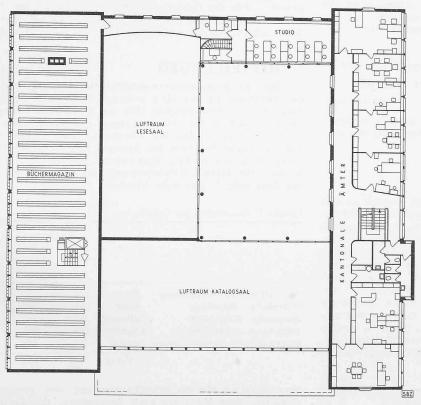

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

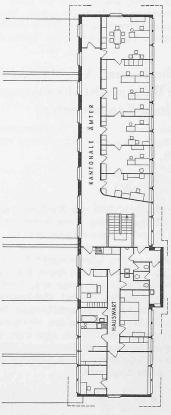
#### Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch




Schnitt Süd-Nord mit Ansicht des Büchermagazins


# Die Zentralbibliothek in Luzern

Architekt OTTO DREYER, Luzern

Grundrisse und Schnitte 1:400



1. Obergeschoss



2. Obergeschoss, Ostflügel

## Wissenschaftliche Arbeitstagung für Kältetechnik, Zürich

DK 061.3:621.56 (494.34)

Das unter der Leitung von Prof. Dr. P. Grassmann, Zürich, stehende Institut für kalorische Apparate und Anlagen der Eidg. Technischen Hochschule veranstaltete unter Mitwirkung des Deutschen Kältevereins und der Firmen Escher Wyss, Zürich, und Gebrüder Sulzer, Winterthur, vom 17. bis 19. April 1952 in Zürich eine Tagung, die vor allem der gegenseitigen Orientierung über die interessanten Forschungsergebnisse auf diesem vielseitigen und wirtschaftlich äusserst wichtigen Gebiet gewidmet war. Zugleich bot sie Gelegenheit, eine Reihe von modernen Kälte- und Wärme-Pumpanlagen zu besichtigen und so ein Bild über den hohen Stand der Kältetechnik in unserem Lande zu vermitteln.

Die sehr vielseitigen Aufgaben, die der modernen Kältetechnik gestellt werden, und der grosse Temperaturbereich, der dabei beherrscht werden muss, erfordert das Arbeiten mit verschiedenen Kältemitteln, deren thermodynamische Eigenschaften bekannt sein müssen. Die Vorträge von Prof. Dr. E. Schmidt, Braunschweig, über die Bestimmung des kritischen Druckes von CO<sub>2</sub> durch optische Messungen und von Dr. L. Riedel, Karlsruhe, über Neues zum Korrespondenzprinzip boten wertvolle Einblicke in die Methoden zur Bestimmung solcher Eigenschaften. Bei allen Umsetzungen von Wärme in Arbeit oder umgekehrt, also auch bei Kälteprozessen, ferner aber auch bei der Wärmeübertragung in Wärmeaustauschern kommt dem Begriff des Wirkungsgrades eine besondere Bedeutung zu. Wie Dr. K. Nesselmann, nachwies, sind zwei thermodynamisch sinnvolle Defini-

tionen des Wirkungsgrades möglich, die jedoch zu verschiedenen Ergebnissen führen. Massgebend ist naturgemäss die Aufgabe, die der Apparat im konkreten Einzelfall zu erfüllen hat. Von besonderem Wert waren die Darbietungen über neue, noch wenig bekannte Möglichkeiten der Kälteerzeugung, so z. B. diejenige durch elektrothermische Ketten, über die Prof. Dr. E. Justi, Braunschweig, sprach, und wobei er auf sehr beachtenswerte Fortschritte hinweisen konnte. Auch die interessanten Bemerkungen von Dipl. Ing. H. Sprenger, Zürich, über seine Untersuchungen am Wirbelrohr, mit dem ein expandierendes Gas in einen warmen und einen kalten Teilstrom getrennt werden kann, sind hier zu nennen. Bei Wärmekraftmaschinen bietet das Verfolgen eines idealen Kreisprozesses die Möglichkeit, sich über die theoretischen Mängel solcher Verfahren Klarheit zu verschaffen. Bei Absorptions-Kälteprozessen sind die Verhältnisse weniger gut überblickbar. Umso wertvoller waren die Betrachtungen von Prof. Dr. Fr. Bosnjakovic, Zagreb, die über die theoretischen Mängel solcher Prozesse Aufschluss gaben. Auf die übrigen Darbietungen, die das volle Interesse der etwa 90 Kursteilnehmer fanden, kann hier nicht näher eingegangen werden. Die Diskussion wurde nach jedem Vortrag eifrig benützt und zeitigte wertvolle Ergänzungen. Besonders seien hier die Beiträge der Diskussionsleiter, Prof. Dr. P. Grassmann, Zürich, Prof. Dr. R. Plank, Karlsruhe, und Prof. Dr. G. Eichelberg, Zürich, hervorgehoben, die mit überlegener Sachkenntnis verstanden, die Dinge an ihren rechten Platz zu stellen.

Der besondere Wert derartiger Veranstaltungen liegt wohl vor allem in der persönlichen Kontaktnahme der verschiedenen Forscher unter sich und mit den Fachleuten der Industrie. Man erfährt vom andern, auf welchem Gebiet er arbeitet, wo er mit seinen Forschungen gegenwärtig steht und in welcher Richtung die Entwicklung weiterläuft. Man versteht sich besser im persönlichen Gespräch als durch Veröffentlichungen und lernt sich auch als Mensch gegenseitig kennen und schätzen. Gerade der Umstand, dass auch über noch nicht abgeschlossene Arbeiten berichtet wurde, schuf eine offenherzige Atmosphäre gegenseitigen Vertrauens, die alle Teilnehmer wohltuend berührte. Dazu trugen auch die wohlgelungenen Exkursionen (Wärmepump- und Kälteanlagen in Zürich und St. Margrethen, Werkbesichtigungen bei Escher Wyss, Zürich, und bei Gebr. Sulzer, Winterthur), die gemeinsamen Mahlzeiten sowie auch die Anwesenheit der Gattinnen verschiedener Kursteilnehmer bei, für die ein besonderes Damenprogramm vorbereitet worden war.

# Zuschrift zum Aufsatz von Dr. Josef Geiger¹) über Waagerechtschwingungen bei Dampfturbinen-Fundamenten

Bei der Berechnung der Durchfederung eines in der Querrichtung biegsamen Tischrahmens ist die Herleitung des Ausdrucks

$$(1) f = \frac{P l^3}{E J} k$$

unverständlich. Wie die Nachrechnung zeigt, handelt es sich um die Verschiebung eines liegenden Rahmens ABCD (Bild 1), der in C und D starr eingespannt ist, unter der Annahme eines starren Querriegels AB und unter Berücksichtigung der Normalkräfte in den Längsriegeln AC und BD (in dem Ausdruck für k ist  $2 \cdot i^2$  zu ersetzen durch  $4 \cdot i^2$ ). Die Berücksichtigung der Normalkräfte bringt zwar eine Verfeinerung; es ist jedoch nicht angebracht, hierbei gleichzeitig die Biegsamkeit des Querriegels AB zu vernachlässigen. Es ist wohl zweckmässiger und einfacher, an Stelle der Normalkräfte die Biegedeformation in sämtlichen Stäben, also auch im Querriegel, zu berücksichtigen. Mit dem im Bauwesen üblichen, von Kleinlogel eingeführten Festwert (der stets mit k, im Aufsatz Geiger jedoch mit n bezeichnet wird):

$$(2) n = \frac{l}{q} \frac{J_q}{J_l}$$

erhält man bei der dargestellten Belastung 2P die Durchfederung 2) 3):

(3) 
$$f = \frac{2Pl^3}{6EJ_l} \frac{3n+2}{12n+2} =$$
$$= \frac{2Pl^3}{6EJ_l} \left(1 - \frac{4,5}{6+1/n}\right)$$

drucks (1). Dieser Ausdruck deckt sich mit den von Dr.

an Stelle des obigen Aus-¥2P Bild 1. Geiger sinngemäss für  $f_A$  bis  $f_D$  angeschriebenen Werten. Ist  $J_q >> J$ , dann wird n sehr gross und Gl. (3) geht über

in den bereits von Dr. Geiger angeführten Sonderfall

$$(4) f = \frac{Pl^3}{12EJ}$$

Die Ausdrücke für  $f_C$  und  $f_D$  sind zweimal so gross, wie von Dr. Geiger angeschrieben, da auf den mittleren Querriegel CD nicht 2  $P_1$ , sondern 4  $P_1$  wirken (Bild 6 und Zusammenzählung der Kräfte im Text des Aufsatzes). Dementsprechend ändern sich die übrigen Ausdrücke. - Es sei hier auch erwähnt, dass ich die Ermittlung der waagrechten Eigenschwingzahlen bei starrer Tischplatte auf etwas anderem Wege bereits gezeigt habe 3) 4). E. Rausch

#### Antwort des Verfassers auf die Zuschrift von Dr. E. Rausch

Setzt man in der von Dr. Rausch unter (3) angeführten Formel  $J_{q}$  gemäss der in meinem Aufsatz gemachten Voraussetzung eines starren Querriegels gleich  $\infty$ , so ergibt sich der dort angeführte Faktor k=0,0833 gegenüber dem damals von mir für die praktisch vorkommenden Fälle angegebenen Wert 0,084. Für die Berechnung der Eigenschwingungszahl kommt nur die Quadratwurzel aus diesem Wert in Frage. Der hiebei sich ergebende Unterschied von nur 0,393 % tritt gegenüber den unvermeidlichen Schwankungen im E-Modul des Stahlbetons, den Unsicherheiten bezüglich der Versteifung des Fundaments durch die Maschinen usf. ganz in den Hintergrund. — Für den freundlichen Hinweis bezüglich der Nichtübereinstimmung von Bild 6 meines Aufsatzes mit dem Text danke ich Dr. Rausch verbindlich. J. Geiger

### **MITTEILUNGEN**

Die Rhein-Main-Donau-Schiffahrtsverbindung hat mit der Kanalisierung des Main zwischen Mainz und Aschaffenburg, die im Gründungsjahr 1921 der Rhein-Main-Donau AG. abgeschlossen wurde, ihren Anfang genommen. Bis 1940 folgte der Main-Ausbau bis Würzburg. Vom nachfolgenden, 136 km langen Teilstück bis Bamberg sind 25 km fertig gestellt und 60 km im Bau. Man rechnet mit dem vollständigen Ausbau der Main-Schiffahrtsstrasse bis Bamberg etwa für das Jahr 1960. Dieser erste Abschnitt (vgl. Tabelle 1) ist die

Tabelle 1. Hauptdaten der Teilstrecken

| Teilstrecken                               | Fluss<br>gebiete      | Distanzen     |                 | Anzahl          |
|--------------------------------------------|-----------------------|---------------|-----------------|-----------------|
|                                            |                       | Strecke<br>km | Abschnitt<br>km | Kraft-<br>werke |
| Aschaffenburg—Würzburg<br>Würzburg—Bamberg | Main<br>Main          | 172<br>136    | 308             | 33              |
| Bamberg—Nürnberg<br>Nürnberg—Regensburg    | Stillkanal<br>Altmühl | 62<br>139     | 201             | 7               |
| Regensburg—Landesgrenze                    | Donau                 |               | 149             | 2               |
|                                            | Total                 |               | 658             | 42              |

Voraussetzung für die Schiffbarmachung des zweiten Abschnittes, über Nürnberg nach Regensburg, der das mittelfränkische Industriegebiet erschliessen soll. Das Projekt für den Betrieb mit 1500 t-Kähnen liegt vor. Nach diesem folgt der Kanal bis Nürnberg der Regnitz und wechselt dann in das Flussgebiet der Altmühl über, um oberhalb Regensburg in die Donau einzumünden. Zwischen Bamberg und dem Kulminationspunkt, der 406 m über Meer liegt, ist eine Höhendifferenz von 170 m zu überwinden. Der dritte Abschnitt betrifft im wesentlichen die Sicherstellung einer Schiffahrtsrinne in der Donau, die auch bei Niederwasser befahrbar ist. Auf der 658 km langen, die drei Abschnitte umfassenden Strecke werden 42 Staustufen mit Kraftwerken kombiniert, von denen 17 erstellt und 4 im Bau sind. Zwei Grossanlagen, Kachlet (Energieerzeugung 300 Mio kWh/Jahr, im Betrieb) und Jochenstein (900 Mio kWh/Jahr, projektiert) liegen an der Donau, 28 kleinere Werke am Main. Von den 13 zwischen Würzburg und Bamberg eingeschalteten Kraftwerken mit

Tabelle 2. Kostenverteilung auf die einzelnen Teilstrecken

| Strecke                 | Länge<br>der .<br>Strecke<br>km | Kosten           |                     |
|-------------------------|---------------------------------|------------------|---------------------|
|                         |                                 | Total<br>Mio DM' | Mittel<br>Mio DM/km |
| Würzburg-Bamberg        | 136                             | 125              | 0,92                |
| Bamberg-Nürnberg        | 62                              | 250              | 4,03                |
| Nürnberg-Donau          | 139                             | 532              | 3,83                |
| Regensburg-Landesgrenze | 149                             | 20               | 0,13                |
| Total                   | 486                             | 927              | 1,91                |

<sup>4)</sup> Rausch: Maschinenfundamente und andere dynamische Bauaufgaben, im Vertrieb VDI-Verlag, Berlin 1936 bis 1943.

<sup>1)</sup> SBZ 1950, Nr. 31, S. 424\*.

<sup>2)</sup> Diese Formel wurde von Dr. Geiger bereits in «Z. VDI» 1922, S. 667, angegeben.

<sup>3)</sup> Rausch: Zur Berechnung von Dampfturbinenfundamenten, «Beton und Eisen» 1931, S. 295 usw.