Feder-Dämpfer-Massen-Modelle: Berechnung der Baugrund-Bauwerk-Interaktion in der Praxis bei dynamisch belastetem Baugrund

Autor(en): Wolf, John P.

Objekttyp: Article

Zeitschrift: Schweizer Ingenieur und Architekt

Band (Jahr): 113 (1995)

Heft 22

PDF erstellt am: 09.08.2024

Persistenter Link: https://doi.org/10.5169/seals-78725

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

518

John P. Wolf, Lausanne

Feder-Dämpfer-Massen-Modelle

Berechnung der Baugrund-Bauwerk-Interaktion in der Praxis bei dynamisch belastetem Baugrund

Der flexible und in der Regel Energie abstrahlende Baugrund kann in einer dynamischen Bauwerksanalyse als einfaches Feder-Dämpfer-Massen-Modell mit frequenzunabhängigen Koeffizienten erfasst werden. Für die beiden Grenzfälle des Baugrundes, den homogenen Halbraum und die homogene Schicht auf starrem Fels, werden für verschiedene Parameter wie Verhältnisse der Abmessungen und Poisson's Querdehnungszahl die Koeffizienten in Tabellen angegeben. Starre Fundamente auf der Oberfläche und mit Einbettung werden für alle Translations- und Rotationsfreiheitsgrade berücksichtigt. Für die praktische Berechnung kann dieses dynamische Modell des Baugrundes direkt mit demjenigen des Bauwerkes gekoppelt werden, wobei ein normales dynamisches Tragwerksprogramm zur Anwendung kommt.

Professor Hugo Bachmann zum 60. Geburtstag gewidmet

Einführung

Aufgabenstellung

Die Aufgabe der dynamischen Baugrund-Bauwerk-Interaktions-Analyse, auch als Boden-Struktur-Wechselwirkungs-Analyse bezeichnet, ist im Bild 1 dargestellt. Ein Bauwerk mit endlichen Abmessungen ist im flexiblen Baugrund eingebettet, welcher unendlich ausgedehnt ist. Oft kann die Kontaktfläche zwischen Bauwerk und Baugrund, im folgenden als Fundament bezeichnet, als starr betrachtet werden. Die zeitabhängige Last wirkt entweder direkt am Bauwerk wie zum Beispiel von rotierenden Maschinen herrührend oder wird über den Baugrund eingeführt wie im Falle von Erdbeben. Die dynamische Beanspruchung des Bauwerkes mit Berücksichtigung der Interaktion mit dem Baugrund soll berechnet werden.

Die Modellierung des Bauwerkes, das sich auch nichtlinear verhalten kann, ist weit entwickelt. Meistens wird die Methode

Tabelle 1.

Geometrie und Wellengeschwindigkeit des Kegelstumpf-Modelles und

der finiten Elemente verwendet, welche mit einer endlichen Anzahl von Freiheitsgraden als verallgemeinerte Federn, Dämpfer und Massen physikalisch gedeutet werden können. Leistungsfähige Computerprogramme zur dynamischen Analyse des Bauwerkes stehen zur Verfügung. Im Gegensatz dazu bereitet die Modellierung des linear sich verhaltenden Baugrundes grosse Schwierigkeiten. Sowohl dessen Flexibilität als auch die Energieabstrahlung ins Unendliche müssen erfasst werden. Zwar ist für anspruchsvolle Spezialaufgaben wie die Erdbebenanalyse von Nuklearbauwerken mit entsprechendem Budget die sogenannten Randelementmethode, beruhend auf der dreidimensionalen Elastizitätstheorie, entwickelt worden. Diese erlaubt aber wegen der grossen Rechenkosten und Arbeitsaufwandes kaum die notwendige Variation der Baugrundparameter, ist wegen ihrer mathematischen Komplexität nicht anschaulich und gehört eher zur angewandten Mechanik als zum Bauingenieurwesen.

Geeigneter sind für die täglich vorkommenden Berechnungen der Baupraxis einfache physikalische Modelle mit einigen Federn, Dämpfern und Massen und einer kleinen Anzahl von Freiheitsgraden, deren Koeffizienten für die wichtigsten Fälle aus Tabellen bestimmt werden können. Die Modellierung des Baugrundes geschieht somit auf die gleiche Weise wie diejenige des Bauwerkes. Insbesondere ist es möglich, die Modelle des Bauwerkes und des Baugrundes zu koppeln und mit einem normalen Tragwerksprogramm die dynamische Baugrund-Bauwerk-Interaktion in einer Berechnung zu erfassen.

Festigkeitslehre des Baugrundes

Die Feder-Dämpfer-Massen-Modelle können als Teil einer Festigkeitslehre des dynamisch belasteten Baugrundes betrachtet werden, analog der technischen Balkenlehre des Statikers mit vereinfachtem Deformationsverhalten (Ebenbleiben der Querschnitte). In dieser Festigkeitslehre des Baugrundes wird der dreidimensionale homogene Halbraum durch einen eindimensionalen Kegelstumpf ersetzt. Wichtig ist, dass dieser Kegelstumpf zur Modellierung eines kreisförmigen Oberflächenfundamentes genau einem

Koeffizienten des Feder-Dämpfer-Massen-Modelles des Bildes 5 für das Fundament auf der Oberfläche des homogenen Halbraumes

Freiheitsgrad	Horizontal	Vertikal		Kippen		Torsion
Equivalenter Radius <i>r</i> o	$\sqrt{rac{A_0}{\pi}}$	$\sqrt{rac{A_0}{\pi}}$		$\sqrt[4]{\frac{4 I_0}{\pi}}$		$\sqrt[4]{\frac{2I_0}{\pi}}$
Schlankheit $\frac{z_0}{r_0}$	$\frac{\pi}{8}(2-\upsilon)$	$\frac{\pi}{4} (1-\upsilon) \left(\frac{c}{c_s}\right)$	2	$\frac{9\pi}{32}(1-v$	$\left(\frac{c}{c_s}\right)^2$	$\frac{9 \pi}{32}$
Poisson's Quer- dehnungszahl v	alle v	$\leq \frac{1}{3}$	$\frac{1}{3} < \nu \leq \frac{1}{2}$	$\leq \frac{1}{3}$	$\frac{1}{3} < v \leq \frac{1}{2}$	alle v
Wellen- geschwindigkeit <i>c</i>	C _s	c _p	2 <i>c</i> _s	c _p	2c _s	c_{s}
Mitschwingende Masse $\Delta M \Delta M_{0}$	0	0	$2,4\left(v-\frac{1}{3}\right)\rho A_{0}r_{0}$	0	$1,2(v-\frac{1}{3})\rho I_0 r_0$	0
Feder-Dämpfer- Massen-Modell		$K = \rho c^2 \frac{A_0}{z_0}$ $C = \rho c A_0$			$K_{\vartheta} = 3 \rho c^2 \frac{I_0}{z_0}$ $C_{\vartheta} = \rho c I_0$ $M_{\vartheta} = \rho I_0 z_0$	

Baustatik

Kreisförmiges Fundament auf die Oberfläche des homogenen Halbraumes

Feder-Dämpfer-System (und für den Rotationsfreiheitsgrad auch einer Masse mit eigenem Freiheitsgrad) entspricht, wie in der wesentlichen Pionierarbeit [1] bewiesen. Eine ausführliche Beschreibung ist in [2] und [3] enthalten. Die einzige Annäherung besteht somit im Ersetzen des Halbraumes durch einen Kegelstumpf, was physikalisch durch den Ingenieur erklärt werden kann. Ein solches Vorgehen ist dem Einführen einer mathematischen Approximation vorzuziehen, die zum Beispiel darin bestehen kann, dass in den Differentialgleichungen der dreidimensionalen Elastizitätstheorie gewisse Terme mit höheren Ableitungen vernachlässigt werden.

Als nächster Schritt können die Koeffizienten des Feder-Dämpfer-Massen-Modells bei gleicher Anordnung durch Kurvenanpassungen bestimmt werden, anstatt diejenigen des Kegelstumpfes zu verwenden. In einem bestimmten Frequenzbereich wird dadurch erreicht, dass die Abweichung (als Summe der Quadrate) zwischen der Näherungslösung des Feder-Dämpfer-Massen-Modells und den zum Beispiel mittels der oben erwähnten Randelementmethode «genauen» Werten, der Literatur entnommen, oder analytischen Resultaten, falls vorhanden, möglichst klein ausfällt.

Die einfachen, viel verwendeten Modelle [4], [5] und [6] für Fundamente auf der Oberfläche eines homogenen Halbraumes oder darin eingebettete Fundamente können auf diese Weise hergeleitet werden. Als Verallgemeinerung ist ein systematisches Verfahren entwickelt worden [7], um eine ganze Familie von Feder-Dämpfer-Massen-Modellen durch parallele Anordnung des Modells des Kegelstumpfes aufzustellen, wobei nach der Approximation durch eine rationale Funktion keine weiteren Näherungen eingeführt werden. Dies erlaubt, Fundamente auf der Oberfläche einer homogenen Schicht oder darin eingebettete Fundamente auf starrem Fels zu erfassen [8]. Materialdämpfung des Baugrundes kann gemäss [9] direkt in den Berechnungsalgorithmus des Feder-Dämpfer-Massen-Modells eingeführt werden.

Nebenbei bemerkt wurden kürzlich unter direkter Verwendung von Kegelstumpfmodellen eine Festigkeitslehre für die meisten vorkommenden Fälle der Baugrunddynamik, Fundamente auf der Oberfläche und eingebettet in auch geschichtetem Halbraum, entwickelt.

Zur Festigkeitslehre des Baugrundes gehören auch Methoden, in denen in einer horizontalen Ebene ein bestimmtes Wellenbild mit den zugehörigen Verformungen vorgeschrieben wird. Dadurch können Green'sche Funktionen zur Berechnung unregelmässiger Oberflächenfundamente und dynamische Interaktionskoeffizienten zum Erfassen der Pfahlgruppenwirkung bestimmt werden.

Die drei Arten von einfachen physikalischen Methoden der Festigkeitslehre des Baugrundes - die Kegelstumpfmodelle, die darauf basierenden Feder-Dämpfer-Massen-Modelle und die Verfahren mit vorgeschriebenem Verformungsverhalten in der horizontalen Ebene - sind in einem kürzlich erschienenen Buch [10] in allen Einzelheiten beschrieben worden. Einfache, physikalisch motivierte Herleitungen, viele Beispiele und praktische Anwendungen werden erfasst. Zwar führen diese einfachen physikalischen Modelle zu einem gewissen Verlust an Genauigkeit, der aber durch die vielen Vorteile mehr als aufgewogen wird. Die einfachen physikalischen Modelle sind anschaulich, einfach anzuwenden (in vielen Fällen auf der Rückseite des berühmten Briefumschlages ohne Computer), allgemein einsetzbar (was die Geometrie des Fundamentes, den Aufbau des Bodenprofiles und die Einbettung anbetrifft) und genügend genau, so dass sie sich für den Einsatz in der Baudynamik-Praxis eignen. Ebenfalls können diese Methoden zur Kontrolle der Resultate der speziellen Computerprogramme der «genauen» Methoden wie diejenige der Randelemente herangezogen werden.

5

Schweizer Ingenieur und Architekt

Nr. 22, 26. Mai 1995

520

Movo

Erreichbare Genauigkeit

Um die Abweichungen der Resultate des Feder-Dämpfer-Massen-Modells von den genauen Lösungen der dreidimensionalen Elastizitätstheorie zu belegen, soll der vertikale Freiheitsgrad einer kreisförmigen starren masselosen Fundamentplatte mit Radius ro auf der Oberfläche einer homogenen Schicht der Dicke d, auf starrem Fels gelagert, mit der Poisson's Querdehnungszahl v untersucht werden (Bild 10). Im folgenden werden $r_0 = d$ und $v = \frac{1}{3}$ gewählt. Das Feder-Dämpfer-Massen-Modell (Bild 11) umfasst neben dem Freiheitsgrad u_0 des Fundamentes auch zwei interne u_1 und u_2 . Es treten vier Federn, drei Dämpfer und eine Masse mit frequenzunabhängigen Koeffizienten auf, wobei diese dimensionslos für den vertikalen Freiheitsgrad, $r_0 / d = 1$ und $v = \frac{1}{3}$ aus der Tabelle 5 entnommen werden. Da das Feder-Dämpfer-Massen-Modell den statischen Fall und den Grenzwert der unendlich grossen Frequenz genau erfasst, sind in Wirklichkeit nur sechs Koeffizienten unabhängig voneinander.

Für eine harmonische Erregung mit der Frequenz ω kann der dynamische Steifigkeitskoeffizient, der das Verhältnis der Amplitude der angreifenden Kraft $P_0(a_0)$ und derjenigen der resultierenden Verschiebung $u_0(a_0)$ beschreibt, als

(1) $S(a_0) = K[k(a_0) + ia_0c(a_0)]$

dargestellt werden mit der dimensionslosen Frequenz $a_0 = \omega r_0 / c_s$ $(c_s =$ Schubwellengeschwindigkeit). In dieser komplexen Schreibweise ist K der statische Wert, $k(a_0)$ der dimensionslose frequenzabhängige Federkoeffizient und $c(a_0)$ der entsprechende Dämpfungskoeffizient. Aus dem Vergleich von $k(a_0)$ und $c(a_0)$ der Berechnung mittels dem Feder-Dämpfer-Massen-Modell, als stark ausgezogene Linie im Bild 2 dargestellt, mit der genauen Lösung der Elastizitätstheorie ergibt sich eine gute Übereinstimmung. Die starke Frequenzabhängigkeit wird gut wiedergegeben; insbesondere kann das Feder-Dämpfer-Massen-Modell dem verschwindenden Wert von $c(a_0)$ im unteren Frequenzbereich (und damit keiner Abstrahlung von Energie im Baugrund) Rechnung tragen.

Als Beispiel einer dynamischen Analyse im Zeitbereich ist die vertikale Verschiebung $u_0(t)$, hervorgerufen durch eine Kraft im Zeitpunkt t = 0 als Einheitsimpuls aufgebracht, berechnet worden (Bild 3). Wiederum sind die Abweichungen von der exakten Lösung klein. Eine sehr grosse Anzahl von Vergleichen der Resultate der einfachen physikalischen Modelle mit den genauen Lösungen ist in [10] enthalten.

Tabelle 2

Statische Steifigkeit und dimensionslose Koeffizienten des Feder-Dämpfer-Massen-Modelles des Bildes 6 für das kreisförmige Fundament auf der Oberfläche des homogenen Halbraumes

	Statische	Dimensionslose Koeffizienten		
	Steifigkeit	Dämpfer	Masse	
	K	γ	μ	
Horizontal	$\frac{8Gr_0}{2-\nu}$	0,58	0,095	
Vertikal	$\frac{4Gr_0}{1-v}$	0,85	0,27	
Kippen	$\frac{8G r_0^3}{3 (1-v)}$	$\frac{0,3}{1+\frac{3(1-\nu)}{8r_0^5\rho}}$	0,24	
Torsion	$\frac{16G r_0^3}{3}$	$\frac{0,433}{1+\frac{2}{r_0^5\rho}}\sqrt{\frac{m}{r_0^5\rho}}$	0,045	

a

Bild 6. Feder-Dämpfer-Massen-Modell ohne internen Freiheitsgrad für a) Translation b) Rotation

Bild 7. Feder-Dämpfer-Massen-Modell mit einem internen Freiheitsgrad

Bild 8. Zylindrisches Fundament, eingebettet im homogenen Halbraum

b)

Feder-Dämpfer-Massen-Modell für das zvlindrische Fundament. eingebettet im homogenen Halbraum mit Kopplung der horizontalen und Kipp-Freiheitsgrade

Bild 9.

Bild 10. Kreisförmiges Fundament auf der Oberfläche der homogenen Schicht

ment, eingebettet in der homogenen

sen-Modell für das zylindrische Fundament. eingebettet in der homogenen Schicht mit Kopplung der horizontalen und Kipp-Frei-

Ubersicht der Tabellen der Koeffizienten der Feder-Dämpfer-Massen-Modelle

In den folgenden Abschnitten werden für die beiden Grenzfälle des Baugrundes, den homogenen Halbraum und die homogenen Schicht auf starrem Fels, die für das Aufstellen des Feder-Dämpfer-Massen-Modells benötigten Angaben bereitgestellt. Massenlose, starre Fundamente auf der Oberfläche des Baugrundes und mit Einbettung werden für eine umfangreiche Parametervariation behandelt. Die Angaben in Tabellenform umfassen die dimensionslosen Koeffizienten der Federn, Dämpfer und Massen, die statischen Steifigkeitskoeffizienten und Angaben über Exzentrizitäten, falls vorhanden. Wie bereits erwähnt, kann das Feder-Dämpfer-Massen-Modell des Baugrundes mit wenigen internen eigenen Freiheitsgraden direkt an der Unterseite des Fundamentes mit dem dynamischen Modell des Bauwerkes gekoppelt werden und das gesamte dynamische Modell mit einem normalen Tragwerksprogramm berechnet werden. Dieses Vorgehen erlaubt es, die dynamische Baugrund-Bauwerk-Interaktion mit nur geringfügig höherem Aufwand zu erfassen, als wenn nur das Bauwerk berechnet würde.

Im folgenden werden nur die für die praktische Berechnung benötigten Angaben aufgeführt. Als Beispiel wird am Schluss eine Schmiedehammerfundation mit nichtlinearem Verhalten besprochen. Die Herleitungen sowie Annahmen und weitere Beispiele sind in den aufgeführten Referenzen und sehr ausführlich im Buch [10] beschrieben. Es wird vorausgesetzt, dass die dynamische Belastung direkt am Bauwerk angreift. Für Erdbeben und andere über den Baugrund eingeführte Erregungen können die Feder-Dämpfer-Massen-Modelle auch verwendet werden. In diesem Fall muss die Erregung in eine direkt am Fundament und somit am Bauwerk angreifenden dynamischen Belastung umgerechnet werden. Dieses geschieht dadurch, dass die Erregung in Form der sogenannten effektiven Fundament-Eingabe-Bewegung dem Feder-Dämpfer-Massen-Modell des Baugrundes aufgezwungen wird. Die zugehörige Reaktionskraft stellt dabei die direkt am Fundament angreifende Last dar. Dieses Vorgehen ist im Abschnitt 6.5 von [10] beschrieben.

Fundament auf der Oberfläche des homogenen Halbraumes

Im folgenden werden drei Möglichkeiten der Modellierung für ein Fundament auf der Oberfläche des homogenen Halbraumes

Tabelle 3.

Statische Steifigkeit und dimensionslose Koeffizienten des Feder-Dämpfer-

BAUGRUND SCHICHT

Massen-Modelles des Bildes 7 für das kreisförmige Fundament auf der Oberfläche des homogenen Halbraumes

		Dimensionslose	e Koeffizienten		
	Statische Steif	igkeit Dämpfer		Massen	
	K	Yo	γ1	μο	μ1
Horizontal	$\frac{8Gr_0}{2-v}$	0,78 — 0,4 v	-	_	_
Vertikal	$\frac{4Gr_0}{1-\nu}$	0,8	0,34 — 4,3 v ⁴	$v < \frac{1}{3} 0$ $v > \frac{1}{3} 0.9 \left(v - \frac{1}{3}\right)$	$0,4-4 v^4$
Kippen	$\frac{8G r_0^3}{3 (1-v)}$	_	$0,42 - 0,3 v^2$	$\begin{aligned} \nu < &\frac{1}{3} 0 \\ \nu > &\frac{1}{3} 0.16 \left(\nu - \frac{1}{3}\right) \end{aligned}$	$0,34 - 0,2 v^2$
Torsion	$\frac{16G r_0^3}{3}$	_	0,29	_	0,2
	0	(0,017)	(0,291)	(—)	(0,171)

Baustatik

Schweizer Ingenieur und Architekt

Nr. 22, 26. Mai 1995

522

(Bild 4) mit zunehmender Genauigkeit für jeden Freiheitsgrad (horizontal, vertikal, Kippen, Torsion) beschrieben.

Kegelstumpfmodell [2, 3]

Für jeden Freiheitsgrad kann ein starres massenloses Fundament mit der Fläche A0, dem (polaren) Trägheitsmoment I0 auf der Oberfläche eines homogenen Halbraumes mit der Poisson's Querdehnungszahl v, Schub- und Dilatationswellengeschwindigkeiten c_s und c_p und Dichte ρ als Kegelstumpf (Bild 5a und Tabelle 1) mit equivalentem Radius r_0 , Schlankheit z_0/r_0 und Wellengeschwindigkeit c modelliert werden ($c_s = \sqrt{G/\rho}, c_p = \sqrt{E_c/\rho}$ mit Schubmodul G und Zusammendrückungsmodul $E_c = G 2(1-v)/V$ (1-2v). Für die horizontalen und Torsions-Kegelstumpf-Modelle mit Schubbeanspruchung ist die Wellengeschwindigkeit c gleich cs. Für die vertikalen und Kipp-Kegelstumpf-Modelle mit axialer Beanspruchung ist c gleich c_p für $v \leq \frac{1}{3}$ und c gleich $2c_s$ für $\frac{1}{3} < v$ ≤1/2. Das Translations-Kegelstumpf-Modell für die Verschiebung u0 und die Kraft P0 entspricht dynamisch exakt dem Feder-Dämpfer-Modell (Bild 5b). Das Rotations-Kegelstumpf-Modell für die Rotation ϑ_0 und das Moment M_0 ist exakt equivalent einem Feder-Dämpfer-Massen-Modell mit einem internen Freiheitsgrad v1 (Bild 5c), von dem zwei Möglichkeiten dargestellt sind. Im Modell ohne das Massenträgheitsmoment M_v sind zwei der Koeffizienten negativ. Alle Koeffizienten (Tabelle 1) sind frequenzunabhängig. Für die vertikale und die Kipp-Bewegungen treten für ¼ <v ≤¼ zusätzlich eine mitschwingende gefangene Masse ΔM und ein Massenträgheitsmoment ΔM_ϑ auf, die direkt dem Fundamentknoten zugeordnet werden.

Feder-Dämpfer-Massen-Modell ohne internen Freiheitsgrad [4]

Diese einfachste Anordnung dem Bild 5b entsprechend ist für den Translationsfreiheitsgrad u_0 und den Rotationsfreiheitsgrad ϑ_0 in den Bildern 6a und 6b dargestellt mit den Angaben in der Tabelle 2. Neben der Feder mit dem statischen Steifigkeitskoeffizienten K treten ein Dämpfer C und eine Masse M (Massenträgheitsmoment für Rotation) auf mit den Koeffizienten:

(2a)
$$C = \frac{r_0}{c_s} \gamma K$$
 (2b) $M = \frac{r_0^2}{c_s^2} \mu K$

Es ist zu beachten, dass γ und μ der Rotationsfreiheitsgrade auch eine Funktion des Massenträgheitsmomentes *m* des Bauwerkes (mitschwingender Teil) sind.

HORIZONTAL

Bild 15.

Tabelle 4.				IVIa
Statische Steifigkeit und	dimensionslose K	oeffizienten	des Feder-Dämp	ofer- tet

Massen-Modelles des Bildes 9 für das zylindrische Fundament, eingebettet im homogenen Halbraum

		Dimensionslose Koeffizienten					
	Statische Steifigkeit	Dämpfer		Masse			
	К	Yo	γ1	μ1			
Horizontal	$\frac{8Gr_0}{2-\nu}\big(1+\frac{e}{r_0}\big)$	$0,68+0,57\sqrt{\frac{e}{r_0}}$	-	_			
Vertikal	$\frac{4G r_0}{1-\nu} \left(1+0.54 \frac{e}{r_0}\right)$	$0,80 + 0,35 \frac{e}{r_0}$	$0,32 - 0,01 \left(\frac{e}{r_0}\right)^4$	0,38			
Kippen	$K_{\rm r} = \frac{8G r_0^3}{3(1-\nu)} \Big[1 + 2,3 \frac{e}{r_0} + 0,58 \Big(\frac{e}{r_0}\Big)^3 \Big]$	$0,15631\frac{e}{r_0}$	$0,40+0,03\left(\frac{e}{r_0}\right)^2$	$0,33+0,10\left(\frac{e}{r_0}\right)^2$			
	Gr_0^3 $(r, \rho)(\rho)^2$	$-0,08906\left(\frac{e}{r}\right)^{2}$					
	$K_{0r} = K_r - \frac{1}{2(2-\nu)} \left(1 + \frac{1}{r_0}\right) \left(\frac{1}{r_0}\right)$	$-0,00874\left(\frac{e}{r_0}\right)^3$					
Torsion	$\frac{16G r_0^3}{3} \left(1 + 2.67 \frac{e}{r_0}\right)$	_	$0,29 + 0,09 \sqrt{\frac{e}{r_0}}$	$0,20+0,25\sqrt{\frac{e}{r_0}}$			

Nr. 22, 26. Mai 1995

523

Feder-Dämpfer-Massen-Modell mit internem Freiheitsgrad [6]

Diese Anordnung vom unteren Teil das Bildes 5c abgeleitet, ist im Bild 7 für den Freiheitsgrad u_0 und die Kraft P_0 dargestellt mit den Angaben in der Tabelle 3. Neben der Feder mit dem statischen Steifigkeitskoeffizienten K und dem Dämpfer C_0 , welche den Fundamentknoten mit der Masse M_0 (Massenträgheitsmoment für Rotation) mit einem starren Auflager verbinden, wird ein interner Freiheitsgrad u_1 mit eigener Masse M_1 (Massenträgheitsmoment für Rotation) eingeführt, welcher mit einem Dämpfer C_1 am Fundamentknoten befestigt ist. Deren Koeffizienten folgen als:

(3a)
$$C_0 = \frac{r_0}{c_s} \gamma_0 K$$
 (3b) $C_1 = \frac{r_0}{c_s} \gamma_1 K$
(3c) $M_0 = \frac{r_0^2}{c_s^2} \mu_0 K$ (3d) $M_1 = \frac{r_0^2}{c_s^2} \mu_1 K$

Fundament eingebettet im homogenen Halbraum (Bild 8)

Für die vertikalen und Torsions-Freiheitsgrade des zylindrischen starren masselosen Fundamentes mit der Einbettung e wird jedes Feder-Dämpfer-Massen-Modell mit einem internen Freiheitsgrad des Bildes 7 mit $M_0 = 0$ verwendet mit den Angaben in der Tabelle 4 und der Gleichung (3) [6].

Um die Kopplung zwischen der horizontalen Verschiebung u_0 mit der Kraft P_0 und der Kipprotation ϑ_0 mit dem Moment M_0 zu erfassen (Bild 9), wird das Feder-Dämpfer-Modell für den horizontalen Freiheitsgrad u_0 dem Bild 5b entsprechend mit den Exzentrizitäten $f_{\rm K}$ und $f_{\rm C}$ angeschlossen:

(4a)
$$f_{\rm K} = 0.25 \, e$$
 (4b) $f_{\rm C} = 0.32 \, e + 0.03 \, e \left(\frac{e}{t_{\rm C}}\right)$

Die Feder K_h mit der statischen Steifigkeit K und der dimensionslose Koeffizient γ_0 des Dämpfers sind in der Tabelle 4 aufgeführt mit:

(5) $C_{0h} = \frac{r_0}{c_s} \gamma_0 K$

Für den Kippfreiheitsgrad ϑ_0 wird das Feder-Dämpfer-Massen-Modell mit einem internen Freiheitsgrad ϑ_1 des Bildes 7 mit M_{0r} = 0 verwendet. Es ist zu beachten, dass die entsprechenden Koeffizienten bezüglich K_r (und nicht K_{0r}) definiert sind, obwohl K_{0r} der Koeffizient der Feder ist, welche die Verbindung zum starren Auflager darstellt [10]:

(6a)
$$C_{0r} = \frac{r_0}{c_s} \gamma_0 K_r$$
 (6b) $C_{1r} = \frac{r_0}{c_s} \gamma_1 K_r$ (6c) $M_{1r} = \frac{r_0^2}{c_s^2} \mu_1 K_r$

Tabelle 5.

Dimensionslose Koeffizienten des Feder-Dämpfer-Massen-Modelles des

Bildes 11 für das kreisförmige Fundament auf der Oberfläche der homogenen Schicht

			Horizontal Vertikal				Kippen	ippen				
			Poisson's O	luerdehnung	szahl v							
			0	1/3	0.45	0	1/3	045	0	1/3	0.45	
	1.00	\mathbf{k}_1	109636 E+02	125658 E+02	107091 E+02	185216 E+02	312572 E+02	585650 E+02	538137 E+01	127100 E+02	125057 E+02	920277 E+01
		k ₂	199616 E+02	100143 E+02	277613 E+02	689058 E+02	+.564651 E+01	+.533868 E+02	118019 E+02	127000 E+01	102097 E+02	488643 E+01
		k3	596293 E+03	236814 E+03	837270 E+03	803915 E+04	297570 E+04	972054 E+05	370561 E+03	106411 E+03	114401 E+05	762034 E+02
		k_4	+.262006 E+02	+.172890 E+02	+.350886 E+02	+.781698 E+02	+.101028 E+02	297301 E+02	+.152717 E+02	+.665102 E+01	+.171002 E+02	+.104850 E+02
		C ₁	423955 E+01	391585 E+01	443420 E+01	564579 E+01	620122 E+01	533597 E+01	152562 E+01	168764 E+01	159579 E+01	209847 E+01
		C ₂	144980 E+02	969345 E+01	164981 E+02	573623 E+02	372925 E+02	162817 E+03	511671 E+01	464871 E+01	205038 E+02	424955 E+01
		C3	+.176380 E+02	+.128349 E+02	+.196381 E+02	+.618023 E+02	+.435725 E+02	+.173237 E+03	+.622671 E+01	+.621871 E+01	+.231038 E+02	+.581955 E+01
		m	444888 E+02	177585 E+02	804875 E+02	355432 E+03	896786 E+02	759400 E+03	136958 E+02	294864 E+01	748688 E+02	501042 E+01
P	0.50	k ₁	101741 E+02	756096 E+01	103098 E+02	869429 E+01	178038 E+02	211241 E+02	558202 E+01	315920 E+01	544861 E+01	584813 E+01
Lo		k_2	711128 E+01	+.221036 E+01	+.353643 E+00	211429 E+02	+.869558 E+01	+.237930 E+02	260867 E+01	+.429538 E+00	+.544528 E+01	+.779373 E+00
e		k3	376551 E+02	183990 E+02	386290 E+02	301954 E+03	648930 E+02	574768 E+04	120186 E+02	563639 E+00	495529 E+02	267204 E+01
10		k_4	+.114651 E+02	+.370791 E+01	+.631911 E+01	+.266455 E+02	+.167960 E+00	104560 E+02	+.553603 E+01	+.268680 E+01	714571 E+00	+.448746 E+01
		C1	563146 E+01	169515 E+01	312323 E+01	635435 E+01	300736 E+01	885920 E+01	180105 E+01	217449 E+00	226588 E+01	873265 E+00
Z		C ₂	853329 E+01	484337 E+01	900332 E+01	118278 E+02	967485 E+01	348879 E+02	209944 E+01	485884 E-01	872006 E+00	664093 E+00
S		C3	+.116733 E+02	+.798337 E+01	+.121433 E+02	+.162678 E+02	+.159548 E+02	+.453079 E+02	+.320944 E+01	+.161859 E+01	+.347201 E+01	+.223409 E+01
adiu		m	125108 E+02	142805 E+02	222875 E+02	438319 E+02	104698 E+02	156304 E+03	166034 E+01	550887 Е-01	105920 E+01	758683 E+00
ä	0.25	\mathbf{k}_1	500393 E+01	569922 E+01	635602 E+01	650348 E+01	866267 E+01	939217 E+01	197103 E+01	131566 E+01	185845 E+01	317223 E+01
0		k ₂	+.117908 E+01	+.113372 E+01	+.126563 E+01	+.212837 E+01	+.360033 E+01	+.591506 E+01	908392 E+00	159178 E+01	+.140842 E+01	110204 E+02
S		k3	531658 E+01	627809 E+01	861155 E+01	111486 E+02	206851 E+02	294639 E+02	+.320667 E+00	+.889908 E+00	198123 E+01	272014 E+02
ï		k_4	+.330564 E+01	+.414181 E+01	+.444955 E+01	+.290606 E+01	+.353509 E+01	+.239510 E+01	+.280516 E+01	+.228996 E+01	+.228257 E+00	+.133791 E+02
all		C ₁	753687 E+00	123420 E+01	118324 E+01	147587 E+01	301652 E+01	652332 E+01	111891 E+01	117566 E+01	166191 E+01	175255 E+01
L.		C ₂	320391 E+01	343160 E+01	476257 E+01	545496 E+01	633133 E+01	153512 E+01	192001 E+01	120420 E+00	608065 Е-01	576183 E+00
Š		C 3	+.634391 E+01	+.657160 E+01	+.790257 E+01	+.989496 E+01	+.126113 E+02	+.119551 E+02	+.131920 E+01	+.199042 E+01	+.266081 E+01	+.214618 E+01
		m	197705 E+02	277938 E+02	353939 E+02	202557 E+02	262470 E+02	217797 E+01	496405 E-02	234838 E-01	166728 E01	408057 E+00
	0.00	\mathbf{k}_1	135004 E+02	388471 E+01	517262 E+01	196175 E+01	741830 E+01	174454 E+02	177328 E+01	371794 E+01	398695 E+01	347454 E+01
		k ₂	953646 E+01	159784 E+02	+.239313 E+00	586095 E+00	+.149859 E+01	+.318590 E+01	825315 E+01	530262 E+01	+.488296 E+01	+.161189 E+00
		k3	152937 E+02	214052 E+02	491200 E+01	+.418313 E+00	108130 E+02	145871 E+03	960129 E+00	456729 E+01	157465 E+02	175021 E+00
		k4	+.100318 E+02	+.139890 E+02	+.491843 E+01	+.253876 E+01	+.426031 E+01	+.401297 E+01	+.363207 E+01	+.648378 E+01	222776 E+01	+.329151 E+01
		CI	108173 E+01	406936 E+00	431719 Е-01	540639 E+00	308148 E+00	287195 E+01	105544 E+01	150532 E+01	158356 E+01	257114 Е-01
		C ₂	164199 E+01	441082 E+00	433318 Е-01	316451 Е-02	760091 E+00	496738 E+01	396130 E+00	400894 E+00	408329 E+00	525606 E-02
		C3	+.478349 E+01	+.358258 E+01	+.318483 E+01	+.470316 E+01	+.704009 E+01	+.153874 E+02	+.150613 E+01	+.197089 E+01	+.300833 E+01	+.157526 E+01
		m	207315 E+00	331202 E-01	126178 E+00	110135 Е-02	348161 E+00	240813 E+01	245402 Е-01	633544 E-01	125199 E+00	126499 Е-02

Fundament eingebettet in der homogenen Schicht

Fundament auf der Oberfläche der homogenen Schicht

Für jeden Freiheitsgrad u_0 mit der Kraft P_0 des kreisförmigen starren masselosen Fundamentes auf der Oberfläche der homogenen Schicht (Bild 10) mit der Dicke *d* auf starrem Fels [8] wird das Feder-Dämpfer-Massen-Modell mit zwei internen Freiheitsgraden u_1, u_2 des Bildes 11 verwendet. Es besteht aus vier Federn K_i , drei Dämpfern C_i und einer Masse *M* mit den Angaben der Tabelle 5. Für die Translationsfreiheitsgrade gilt (Schubmodul *G*):

(7a)
$$K_i = k_i Gr_0 i = 1, ..., 4$$
 (7b) $C_i = c_i G \frac{r_0^2}{c_s} i = 1, ..., 3$ (7c) $M = m G \frac{r_0^3}{c_s^2}$

Für die Rotationsfreiheitsgrade wird die rechte Seite der Gleichung (7) mit r_0^2 multipliziert.

Für die vertikalen und Torsions-Freiheitsgrade des zylindrischen starren masselosen Fundamentes (Bild 12) mit der Kontaktlänge e_c [8] wird je das Feder-Dämpfer-Massen-Modell mit zwei internen Freiheitsgraden des Bildes 11 verwendet mit den Angaben in der Tabelle 6 und den Gleichungen (7). Um die Kopplung zwischen der horizontalen Verschiebung u_0 und der Kipprotation ϑ_0 einzuführen, wird zusätzlich zu den Feder-Dämpfer-Massen-Modellen dieser beiden Freiheitsgrade ein weiteres mit der Exzentrizität *e* eingeführt. Dieses Feder-Dämpfer-Massen-Modell ist im Bild 13 und in der Tabelle 6 mit dem Wort Kopplung bezeichnet.

Tabelle 6. Dimensionslose Koeffizienten der Feder-Dämpfer-Massen-Modelle der Bilder 11 und 13 für das zylindrische Fundament, eingebettet in der homogenen Schicht (Verhältnis von Einbettung zu Radius $e/r_0 = 1$)

				Vertikal	/ertikal Horizontal		Kippen Kopplung		
	1/2		1.00	k,	203759 E+02	124401 E+02	125229 E+02	618776 E+01	139252 E+02
				k ₂	+.339543 E+01	+.286199 E+01	583152 E+00	+.202777 E+01	275441 E+01
				k_3	617014 E+01	208541 E+02	814822 E-01	141784 E+02	+.178780 E+01
				k,	+.166202 E+02	+.794575 E+01	+.130945 E+02	+.337083 E+01	+.161164 E+02
		1		C ₁	918456 E+01	590158 E+01	315268 E+01	333135 E+01	774712 E-02
				C ₂	596381 E+00	516028 E+01	885823 E-01	340080 E+01	736101 E+00
				C3	+.131164 E+02	+.130103 E+02	+.322858 E+01	+.811310 E+01	+.858610 E+01
				m	987169 E+00	163126 E+02	680666 E+00	146553 E+02	962102 E+00
			0.50	k ₁	190169 E+02	123585 E+02	918010 E+01	311508 E+01	150459 E+02
				k,	+.102770 E+02	+.382788 E+01	+.934512 E+00	+.786487 E+00	+.149201 E+01
				k3	256293 E+02	116229 E+02	466308 E+01	869559 E+01	230599 E+01
				k4	+.480379 E+01	+.697738 E+01	+.821627 E+01	+.184030 E+01	+.132374 E+02
				C ₁	803919 E+00	129978 E+01	212247 E+01	715314 E+00	513171 E+00
				C ₂	378972 E+01	357027 E+01	316747 E+00	208337 E+01	403901 E+00
				C3	+.131677 E+02	+.102413 E+02	+.266675 E+01	+.326137 E+01	+.511390 E+01
				m	364874 E+01	820645 E+01	342125 E+01	888905 E+01	515523 E+00
P			0.00	k,	199866 E+02	113528 E+02	801960 E+01		820959 E+01
te ro				k,	+.324059 E+01	+.187819 E+01	+.103933 E+01		+.236828 E+00
				k,	138239 E+03	141228 E+02	800817 E+01		295213 E+00
10		e		k,	+.151110 E+02	+.837372 E+01	+.584466 E+01		+.794727 E+01
zu D		2		C1	577181 E+01	169786 E+01	101867 E+01		288545 E+00
		5		C,	891247 E+01	396633 E+01	157192 E+01		308176 E-01
ST		hältnis		C3	+.151425 E+02	+.710633 E+01	+.313092 E+01		+.160082 E+01
Radiu				m	485815 E+02	142894 E+02	217586 E+01		372596 E-01
	1/3	l le	1.00	k ₁	215677 E+02	800686 E+01	112339 E+02	531331 E+01	158881 E+02
0		kt		k ₂	+.995664 E+01	+.248098 E+01	+.271244 E+01	+.128879 E+01	216892 E+01
S		Ita		k ₃	299529 E+02	530555 E+01	112792 E+02	117090 E+02	+.122884 E+01
tr.		0		\mathbf{k}_4	+.122789 E+01	+.460883 E+01	+.830774 E+01	+.314281 E+01	+.175253 E+02
ai		×		C1	214856 E+01	638370 E+01	185381 E+01	345899 E+01	770582 E+00
ta				C2	703468 E+01	234186 E+01	147482 E+01	442673 E+01	114118 E+01
Š				C3	+.195563 E+02	+.101919 E+02	+.461482 E+01	+.913903 E+01	+.899118 E+01
				m	476605 E+01	598035 E+01	101760 E+02	222249 E+02	244900 E+01
			0.50	\mathbf{k}_1	263609 E+02	105510 E+02	812675 E+01	258694 E+01	164865 E+02
				k ₂	+.106994 E+02	+.323771 E+01	+.327590 E+01	+.487010 E+00	+.162631 E+01
				k ₃	415582 E+02	101866 E+02	183711 E+02	708362 E+01	359665 E+01
				k4	+.391023 E+00	+.579774 E+01	+.434718 E+01	+.155304 E+01	+.138158 E+02
				Cl	734715 E-02	691681 E-01	831614 E+00	752538 E+00	786309 E+00
				C2	101472 E+02	475156 E+01	272228 E+01	265221 E+01	129218 E+01
				C3	+.195330 E+02	+.114226 E+02	+.507228 E+01	+.383021 E+01	+.600218 E+01
				m	674277 E+01	148975 E+02	147137 E+02	128622 E+02	159889 E+01
			0.00	\mathbf{k}_1	147108 E+02	922525 E+01	736535 E+01		790274 E+01
				k ₂	+.600489 E+01	+.187933 E+01	907967 E+00		+.176502 E-01
				k ₃	355109 E+02	788239 E+01	157724 E+03		179897 E-01
				\mathbf{k}_{4}	+.527313 E+01	+.637232 E+01	+.684877 E+01		+.788488 E+01
				C ₁	203850 E+01	425306 E-01	168579 E+01		128670 E+00
				C ₂	830045 E+01	368700 E+01	114538 E+02		263292 E03
			0	C ₃	+.145304 E+02	+.682700 E+01	+.130128 E+02		+.157125 E+01
				m	200705 E+02	139626 E+02	920928 E+02		331649 E03

Baustatik

Literatur [1]

Meek, J.W. and Veletsos, A.S.: Simple Models for Foundations in Lateral and Rocking Motion, Proceedings of the 5th World Conference on Earthquake Engineering, Rome, 1974, Vol. 2: 2610-2613.

[2]

Meek, J.W. and Wolf, J.P.: Cone Models for Homogeneous Soil, Journal of Geotechnical Engineering, ASCE, 118 (1992): 667-685.

[3]

Meek, J.W. and Wolf, J.P.: Cone Models for Nearly Incompressible Soil, Earthquake Engineering and Structural Dynamics, 22 (1993): 649-663. [4]

Whitman, R.V.: Soil-Platform Interaction, Proceedings of the Conference on the Behaviour of Offshore Structures, Norwegian Geotechnical Institute, Oslo, 1976, Vol. 1: 817-829.

[5]

[6]

Richart, F.E., Hall, J.R. and Woods, R.D.: Vibrations of Soils and Foundations, Englewod Cliffs, NJ: Prentice-Hall, 1970.

Wolf, J.P. and *Somaini, D.R.:* Approximate Dynamic Model of Embedded Foundation In Time Domain, Earthquake Engineering and Structural Dynamics, 14 (1986): 683-703.

ſ

Wolf, J.P.: Consistent Lumped-Parameter Models for Unbounded Soil: Physical Representation, Earthquake Engineering and Structural Dynamics, 20 (1991): 11-32.

[8]

Wolf, J.P. and *Paronesso, A.:* Lumped-Parameter Model for a Rigid Cylindrical Foundation Embedded in a Soil Layer on Rigid Rock, Earthquake Engineering and Structural Dynamics, 21 (1992): 1021 1038. [9]

Meek, J.W. and *Wolf, J.P.*: Material Damping for Lumped-Parameter Models of Foundations, Earthquake Engineering and Structural Dynamics, 23 (1994): 349-362.

[10]

Wolf, J.P.: Foundation Vibration Analysis Using Simple Physical Models, Englewod Cliffs, NJ: Prentice-Hall, 1994.

Schmiedehammerfundation

Als praktisches Beispiel einer nichtlinearen Analyse der Baugrund-Bauwerk-Interaktion wird ein Schmiedehammerfundament, eingebettet in eine Bodenschicht auf starrem Fels, besprochen (Bild 14). Der Hammer schlägt auf den exzentrisch angeordneten Amboss auf. Da die Lager zwischen dem Stahlamboss und dem Betonblock keinen Zug übertragen können, wird sich ein teilweises Abheben des Ambosses einstellen, sobald die vertikale dynamische Kraft im Lager die Eigenlast übersteigt. Die Koeffizienten der Feder-Dämpfer-Massen-Modelle des zylindrischen eingebetteten Fundamentes für die vertikalen und horizontalen Verschiebungen, die Kipprotation und den Kopplungsterm folgen für $r_0/d = 0.5$ und $e_c/e = 1$ aus der Tabelle 6 (Bild 15). Im linearen Fall, also ohne Abheben, treten 4×2 Freiheitsgrade für die Feder-Dämpfer-Massen-Modelle des Baugrundes und die 2×3-Starrkörperfreiheitsgrade des Blocks und des Ambosses auf. Das totale dynamische Modell des Bildes 15 kann direkt mit einem Tragwerksprogramm, welches lokale Nichtlinearitäten zulässt, verarbeitet werden. Wie erwartet, erhöht das Abheben die vertikale Verschiebung des Ambosses wa beträchtlich verglichen mit dem Resultat einer linearen Berechnung (Bild 16).

Adresse des Verfassers:

John P. Wolf, Dr. sc. techn., Abteilung für Bauingenieurwesen, Eidgenössische Technische Hochschule Lausanne, 1015 Lausanne.