Zeitschrift:	Bulletin des Schweizerischen Elektrotechnischen Vereins						
Herausgeber:	chweizerischer Elektrotechnischer Verein ; Verband Schweizerischer ektrizitätswerke						
Band: 61 (1970)							
Heft:	12						
Artikel:	Transistor-Endverstärker mit Komplementär-Transitoren						
Autor:	Henne, W.						
DOI:	https://doi.org/10.5169/seals-915949						

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 16.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Transistor-Endverstärker mit Komplementär-Transistoren

Von W. Henne, Augsburg

822-844

621.375.4:621.375(-195.6)

Nach einleitenden Worten über die verschiedenen Möglichkeiten, eisenlose NF-Endstufen zu verwirklichen, wird die qualitative Wirkungsweise von Endstufen mit Komplementär-Transistoren besprochen. Es werden die zur Dimensionierung von Treiber- und Endstufe notwendigen Gleichungen abgeleitet und diese anhand einiger Beispiele ausführlich erläutert.

1. Einleitung

Bei Röhrenverstärkern bereitet die Verwendung eisenloser Endstufen insofern Schwierigkeiten, als deren optimale Abschlusswiderstände in der Grössenordnung von «Kiloohm» liegen. Gebräuchliche Lautsprecherwiderstände ($R_{\rm L} \approx$ 1,25 R_{Cu} der Lautsprecherspule) liegen aber in der Grössenordnung von 10 Ω und damit in der Grössenordnung der optimalen Abschlusswiderstände für Transistor-Endstufen,

wodurch sich diese besonders für die hier beschriebene Schaltungsanlage eignen.

Vorteile der eisenlosen Endstufen:

a) geringe Kosten,

- b) kleines Gewicht und geringer Raumbedarf,
- Frequenzabhängigkeit des Übertragers entfällt, c)
- d) keine Vormagnetisierung des Eisens bei A-Betrieb,

e) mögliche Einwirkung magnetischer Felder auf den Übertrager entfällt (Netzbrumm!).

In der Praxis sind von besonderem Interesse die Gegentakt-Endstufen. Vorteil: Der Stromverbrauch ist bei kleiner Aussteuerung sehr klein und steigt etwa proportional mit der Ausgangsamplitude. Im Gegensatz zum Gegentakt-B-Verstärker mit Übertrager (Fig. 1) liegen die beiden Endtransistoren einer eisenlosen Endstufe gleichstrommässig nicht parallel, sondern in Serie; und das sowohl bei pnp-pnp-Endstufen (Fig. 2) als auch bei pnp-npn-Endstufen (Fig. 3).

¹) Siehe Literatur am Schluss des Aufsatzes.

A près quelques mots d'introduction sur les diverses possibilités de réaliser des étages de sorties BF sans fer, on discute l'action qualitative des étages de sortie pourvus de transistors complémentaires. On indique les équations indispensables au dimensionnement des étages d'attaque et de sortie, en illustrant ces données d'une manière explicite à l'aide de quelques exemples.

Die pnp-npn-Endstufe hat gegenüber der pnp-pnp-Endstufe den Vorteil, dass sie keine Phasenumkehrstufe benötigt. Dabei können die beiden Transistoren der Fig. 3 auch ver-

pnp-npn-Gegentakt-Endstufe Bezeichnungen siehe Fig. 2

tauscht werden, wobei Schaltungen einschliesslich der Treiberstufe gemäss Fig. 4 und 5 üblich sind.

2. Eisenlose Endstufe mit Komplementär-Transistoren

2.1 Wahl der Schaltung

2.1.1 Emitterschaltung. Aus Gründen möglichst grosser Verstärkung wäre zunächst die Emitterschaltung gemäss Fig. 6

angebracht. Nachteil dieser Schaltung ist: Die Batterie lässt sich einseitig nicht erden, womit die Potentiale an den Batterieklemmen der jeweiligen Aussteuerung folgen. In der Schaltung nach Fig. 7 ist wohl Erdung der Batterie möglich; als Nachteil

tritt hier aber die notwendige gleichstrommässige Trennung der beiden Basisanschlüsse in Erscheinung.

2.1.2 Kollektorschaltung (Fig. 8). Die erwähnten Nachteile werden bei der Kollektorschaltung vermieden. Hier aber tritt als neuer Nachteil auf, dass die Spannungsverstärkung der Kollektorschaltung maximal gleich 1 wird, womit die Treiberstufe bereits die Ausgangsspannung (nicht Ausgangsleistung!) liefern muss.

Vorteile dieser Schaltung sind:

a) Batterie lässt sich einseitig erden, wobei die Erdung der Mittelanzapfung durch Verwendung eines Kondensators (Fig. 9) vermieden werden kann.

b) Kollektorschaltung lässt sich als stark gegengekoppelte Emitterschaltung auffassen. Dadurch Verbesserung des Klirrfaktors und des Frequenzganges bei Verwendung der Kollektorschaltung gegenüber der Emitterschaltung.

Nachteil dieser Schaltung ist, dass die Spannungsverstärkung kleiner als 1 ist. Da der gleiche Eingangsstrom benötigt wird wie bei der Emitterschaltung, ist auch eine kleinere Leistungsverstärkung in Kauf zu nehmen.

2.2 Qualitative Wirkungsweise (Fig. 10)

Es seien folgende Annahmen gemacht:

a) Die Gegentakt-Endstufe wird von einem sinusförmigen Basisstrom angesteuert;

b) Der Verstärker arbeite in B-Betrieb.

Nach der Strom-Steuerkennlinie $I_{\rm C} = f(I_{\rm B})$ der beiden Komplementär-Transistoren, z. B. der Transistoren AC 187 K (npn) und AC188 K (pnp), treten folgende Verhältnisse auf:

ba) Positive Halbwelle: npn-Transistor ist geöffnet, während der pnp-Transistor gesperrt ist. Es fliesst der Strom vom Pluspol der Batterie durch die Reihenschaltung von npn, $C_{\rm L}$ und $R_{\rm L}$ zum Minuspol. Dabei lädt sich $C_{\rm L}$ nahezu auf die Batteriespannung $U_{\rm b}$ auf.

bb) Negative Halbwelle: npn-Transistor ist gesperrt, während der pnp-Transistor geöffnet ist. Es fliesst Strom von der positiven Kondensatorplatte durch die Reihenschaltung aus pnp und $R_{\rm L}$, d. h. aber in umgekehrter Richtung durch R_L bezogen auf die positive Basisstrom-Halbwelle.

Beide Halbwellen setzen sich in $R_{\rm L}$ phasenrichtig zum Gesamt-NF-Strom iNF zusammen.

2.3 Spannungen an Treiber- und Endstufe

Die Berechnung des eisenlosen Endstufen-Verstärkers beginnt zweckmässig mit der Treiberstufe: Wegen der Spannungsverstärkung (v < 1) einer Kollektorschaltung muss die Treiberstufe die gesamte Ausgangs-

spannung liefern. Damit wird der Arbeitspunkt des Treibertransistors zweckmässig in die Mitte des ausnutzbaren Kennlinienfeldes gelegt (Fig. 11).

2.3.1 Ausgangsspannung der Treiberstufe. Betragsmässig entnimmt man der Fig. 11:

$$U_{\rm b} = U_{\rm CMt} + (U_{\rm CMt} - U_{\rm EMt}) = 2 U_{\rm CMt} - U_{\rm EMt}$$
 (1)

$$U_{\rm CMt} = \frac{U_{\rm b} + U_{\rm EMt}}{2} \tag{2}$$

Für die maximale Ausgangswechselspannung der Treiberstufe \hat{u}_{Ct} , die auch die Endstufe ansteuert und damit nahezu auch die Spannung am Lastwiderstand RL ist, liest man aus Fig. 11 ab:

$$\hat{u}_{Ct} = U_{CMt} - U_{EMt} =$$

$$= \frac{U_{b} + U_{EMt}}{2} - U_{EMt} = \frac{U_{b} - U_{EMt}}{2}$$
(3)

2.3.2 Spannung am Lastwiderstand RL. Die Spannung UCMt liegt nach Fig. 12 zwischen Basis und Kollektor des npn-Endstufentransistors, während am pnp-Endstufentransistor lediglich $U_{\rm bC} < U_{\rm CMt}$ liegt. Wegen der kleineren Speisespannung des pnp-Transistors bestimmt dieser die maximale am Lastwiderstand $R_{\rm L}$ liegende Ausgangswechselspannung $\hat{u}_{\rm NFmax}$. Man entnimmt der Fig. 12:

 $\hat{u}_{
m NFmax} = U_{
m bC} - U_{
m CErest} - \hat{u}_{
m BE}$

Mit

$$U_{\rm bC} = U_{\rm b} - U_{\rm CMt}$$
 und $U_{\rm CMt} = \frac{U_{\rm b} + U_{\rm EMt}}{2}$ (5)

wird dann

$$\hat{u}_{\rm NFmax} = U_{\rm b} - \frac{U_{\rm b} + U_{\rm EM2}}{2} - U_{\rm CErean} - \hat{u}_{\rm BE} \qquad (6)$$

$$\hat{u}_{\rm NFmax} = \frac{U_{\rm b} - U_{\rm EMt}}{2} - U_{\rm CErest} - \hat{u}_{\rm BE} \tag{7}$$

(4)

Fig. 9 Prinzipschaltung eines Gegentakt-B-Verstärkers mit Komplementär-Transistoren in Kollektorschaltung

2.4 Berechnung der Endstufe

2.4.1 Maximale NF-Leistung. Die maximale am Lastwiderstand R_L liegende NF-Leistung P_{NFmax} ist bekanntlich:

$$P_{\rm NFmax} = \frac{\hat{u}_{\rm NFmax}^2}{2 R_{\rm L}}$$
(8)

Mit Gl. (7) wird daraus:

$$P_{\rm NFmax} = \frac{[U_{\rm b} - U_{\rm EMt} - 2 (U_{\rm CErest} + \hat{u}_{\rm BE})]^2}{8 R_{\rm L}} \qquad (9)$$

Die NF-Leistung für einen zugelassenen Klirrfaktor k = 10 % ist je nach Batteriespannung etwa 20...30 % grösser als P_{NFmax} nach Gl. (9):

$$P_{\text{NFmax}(10\%)} = 1, 2...1, 3 P_{\text{NFmax}}$$
 (10)

In der Praxis besitzen die Endstufen-Transistoren zur Temperaturstabilisierung noch je einen Emitterwiderstand. In diesem Falle reduziert sich der durch $R_{\rm L}$ fliessende Kollektorstrom auf:

$$\hat{i}_{\rm c} = \frac{\hat{u}_{\rm NFmax}}{R_{\rm L} + R_{\rm E}} \tag{11}$$

Mit

$$P_{\rm NFmax} = \frac{\hat{i}_c^2 R_{\rm L}}{2} = \frac{\hat{u}_{\rm NFmax}^2}{2 (R_{\rm L} + R_{\rm E})^2} R_{\rm L}$$
(12)

und Gl. (7) erhält man für die maximale NF-Leistung:

$$P_{\rm NFmax} = \frac{[U_{\rm b} - U_{\rm EMt} - 2(U_{\rm CErest} + \hat{u}_{\rm BE})]^2}{8(R_{\rm L} + R_{\rm E})^2} R_{\rm L} \quad (13)$$

Wenn keine anderen Anforderungen an die Emitterwiderstände der Endstufen vorliegen, sind diese gemäss Tabelle I zu wählen.

Für überschlägige Leistungsberechnung einer eisenlosen Endstufe mit Komplementär-Transistoren kann gesetzt werden

$$R_{\rm E} \ll R_{\rm L}; \ \hat{u}_{\rm NFmax} \approx U_{\rm b}/2$$
 (14)

womit man folgende Näherungsformel für die maximale NF-Leistung bekommt:

$$P_{\rm NFmax} = \frac{U_{\rm b}^2}{8 R_{\rm L}} \tag{15}$$

Zusammenfassend sei festgestellt, dass bei eisenlosen Endstufen die maximale NF-Leistung durch die Batteriespannung U_b und den Abschlusswiderstand R_L bestimmt ist. Bei Verwendung eines Übertragers konnte R_L bekanntlich durch Wahl des Übersetzungsverhältnisses optimal an den Innenwiderstand der Röhre oder des Transistors angepasst werden.

Fig. 13 zeigt die graphische Auswertung der Näherungsformel Gl. (15).

2.4.2 Kollektorverlustleistung. Jeder der beiden Endtransistoren ist jeweils nur eine halbe Periodendauer belastet. Damit wird die Verlustleistung:

506 (A 351)

$$R_{\rm L}/\Omega$$
 2
 4
 8
 16
 32
 64
 128

 $R_{\rm E}/\Omega$
 0,25
 0,5
 1
 1
 2
 2
 4

$$P_{\rm v} = \frac{1}{T} \left(\int_{0}^{T/2} i_{\rm c} \, u_{\rm CE} \, \mathrm{d}t + \int_{T/2}^{T} 0 \, \mathrm{d}t \right) \tag{16}$$

Unter der Voraussetzung, dass die Speisespannung jedes Endstufentransistors näherungsweise $U_b/2$ beträgt, d. h. unter Vernachlässigung von $U_{\rm EMt}$ des Treibers und $\hat{u}_{\rm BE}$ der Endstufe (vgl. Fig. 12), erhält man für die Kollektor-Emitterspannung und den Kollektorstrom eines Endstufen-Transistors: $u_{\rm CE} = \frac{U_b}{2} - \hat{u}_c \sin \omega t$

und

$$i_{\rm c} = \hat{i}_{\rm c} \sin \omega t = \frac{\hat{\mu}_{\rm c}}{R_{\rm L} + R_{\rm E}} \sin \omega t$$
(17)

Eingesetzt in Gl. (16) ergibt:

$$P_{\rm v} = \frac{1}{2\pi} \int_{0}^{\pi} \frac{\hat{u}_{\rm c}}{R_{\rm L} + R_{\rm E}} \sin \omega t \left(\frac{U_{\rm b}}{2} - \hat{u}_{\rm c} \sin \omega t\right) \mathrm{d}\omega t = \quad (18)$$

$$1 \int_{0}^{\pi} \frac{\hat{u}_{\rm c}}{L} = \frac{U_{\rm b}}{L} \sin \omega t \mathrm{d}\omega t = \quad (18)$$

$$= \frac{1}{2\pi} \left(\int_{0}^{\pi} \frac{\mathbf{u} \cdot \mathbf{e}}{\mathbf{R}_{\rm L} + \mathbf{R}_{\rm E}} \cdot \frac{\mathbf{O}}{2} \sin \omega t \cdot d\omega t - - \int_{0}^{\pi} \frac{\hat{u}_{\rm c}^{2}}{\mathbf{R}_{\rm L} + \mathbf{R}_{\rm E}} \sin^{2} \omega t \cdot d\omega t \right) =$$

$$(19)$$

$$= \frac{1}{2\pi} \left[-\frac{\hat{u}_{c} U_{b}}{2(R_{L}+R_{E})} \cos \omega t \Big|_{0}^{\pi} - \frac{\hat{u}_{c}^{2}}{R_{L}+R_{E}} \left(-\frac{1}{4} \sin 2 \omega t + \frac{\omega t}{2} \Big|_{0}^{\pi} \right) \right]$$
(20)

$$= \frac{1}{2\pi} \left(\frac{\hat{u}_{\rm c} \, U_{\rm b}}{2 \, (R_{\rm L} + R_{\rm E})} \cdot 2 - \frac{\hat{u}_{\rm c}^2}{R_{\rm L} + R_{\rm E}} \cdot \frac{\pi}{2} \right) \tag{21}$$

$$P_{\rm v} = \frac{\hat{u}_{\rm c}}{2\left(R_{\rm L} + R_{\rm E}\right)} \left(\frac{U_{\rm b}}{\pi} - \frac{\hat{u}_{\rm c}}{2}\right) \quad (22)$$

Bestimmung des Maximalwertes der auftretenden Verlustleistung durch Extremwertbildung:

$$\frac{\mathrm{d}P_{\rm v}}{\mathrm{d}\hat{u}_{\rm c}} = \frac{U_{\rm b}}{2\,\pi\,(R_{\rm L}+R_{\rm E})} - \frac{2\,\hat{u}_{\rm c}}{4\,(R_{\rm L}+R_{\rm E})} = 0 \rightarrow \hat{u}_{\rm c} = \frac{U_{\rm b}}{\pi} \quad (23)$$

d. h. der Maximalwert der Verlustleistung tritt in dem Augenblick auf, in dem $\hat{u}_c = U_b/\pi$ ist, wobei sich \hat{u}_c bekanntlich mit der Lautstärke ändert. Damit wird die maximale Verlustleistung

$$P_{\rm vmax} = \frac{U_{\rm b}}{2\,\pi\,(R_{\rm L}+R_{\rm E})} \left(\frac{U_{\rm b}}{\pi} - \frac{U_{\rm b}}{2\,\pi}\right) = \frac{U_{\rm b}^2}{R_{\rm L}+R_{\rm E}} \cdot \frac{1}{4\,\pi^2}$$
(24)

Wird die oben gemachte Vernachlässigung einer für beide Endtransistoren gleichen Speisespannung $U_b/2$ fallengelassen, so erhält man für den pnp-Transistor entsprechend seiner kleineren Speisespannung und für den npn-Transistor entsprechend seiner grösseren Speisespannung:

für pnp:

$$P_{\rm vmax} = \frac{(U_{\rm b} - U_{\rm EMt})^2}{4 \pi^2 (R_{\rm L} + R_{\rm E})}$$
(25)

Bull. SEV 61(1970)12, 13 juin

Tabelle I

Fig. 10 Zur Erklärung der Wirkungsweise eines Gegentakt-Verstärkers mit Komplementär-Transistoren *i*_B Basiswechselstrom; *i*_c Kollektorwech-

selstrom; $I_{\rm B}$ Basisgleichstrom; $I_{\rm c}$ Kollektorgleichstrom; $I_{\rm E}$ Emittergleichstrom

für npn:

$$P_{\rm vmax} = \frac{(U_{\rm b} + U_{\rm EMt})^2}{4 \pi^2 (R_{\rm L} + R_{\rm E})}$$
 (26)

Wird aber ein npn-Treiber benutzt, so tritt entsprechend der abzuändernden Schaltung am pnp-Transistor die grössere Verlustleistung auf.

2.4.3 Wirkungsgrad. Die Definition des Wirkungsgrades ist:

$$\eta = \frac{P_{\rm NF}}{P_{\rm b}} = \frac{\rm NF-Leistung}{\rm Batterieleistung}$$
(27)

Die Batterieleistung errechnet sich wie folgt:

$$P_{\rm b} = \frac{1}{\mathrm{T}} \int_{0}^{\mathrm{T/2}} U_{\rm b} \, i_{\rm c} \, \mathrm{d}t =$$

$$= \frac{1}{2\pi} U_{\rm b} \hat{i}_{\rm c} \int_{0}^{\pi} \sin \omega t \, \mathrm{d}\omega t = \frac{U_{\rm b} \hat{i}_{\rm c}}{2\pi} \left(-\cos \omega t \right) \bigg|_{0}^{\pi} = \frac{U_{\rm b} \hat{i}_{\rm c}}{\pi}$$
(28)

Mit der Näherung (Fig. 10)

$$\hat{f}_{\rm c} = \frac{U_{\rm b}/2}{R_{\rm L}} \tag{29}$$

wird die Batterieleistung:

$$P_{\rm b} = \frac{U_{\rm b}^2}{2\,\pi\,R_{\rm L}}\tag{30}$$

Bezieht man diese Batterieleistung auf die Näherungsformel für die maximale NF-Leistung nach Gl. (15), so wird der maximale Wirkungsgrad:

$$\eta_{\rm max} = \frac{U_{\rm b}^2/8 R_{\rm L}}{U_{\rm b}^2/2 \pi R_{\rm L}} = \frac{\pi}{4} = 78,5 \%$$
(31)

2.4.4 Verlust- und NF-Leistung. Es war nach den Gl. (13) und Gl. (26):

$$P_{\rm NFmax} = \frac{[U_{\rm b} - U_{\rm EMt} - 2(U_{\rm CErest} + \hat{u}_{\rm BE})]^2}{(8 R_{\rm L} + R_{\rm E})^2} R_{\rm L} \quad (32)$$

$$P_{\rm vmax} = \frac{(U_{\rm b} + U_{\rm EMt})^2}{4 \,\pi^2 \,(R_{\rm L} + R_{\rm E})} \tag{33}$$

Mit

$$R_{\rm L} + R_{\rm E} = \frac{(U_{\rm b} + U_{\rm EMt})^2}{4 \,\pi^2 \, P_{\rm vmax}} \tag{34}$$

wird aus Gl. (13):

$$P_{\rm NFmax} =$$

j

$$= \left[\frac{U_{\rm b} - U_{\rm EMt} - 2\left(U_{\rm CErest} + \hat{u}_{\rm BE}\right)}{U_{\rm b} + U_{\rm EMt}}\right]^2 \frac{\pi^2}{2\left(1 + R_{\rm E}/R_{\rm L}\right)} P_{\rm vmax}$$
(35)

Ist die Batteriespannung U_b gross gegenüber allen anderen Spannungen und ist R_E gegenüber R_L zu vernachlässigen, so erhält man die Näherungsgleichung

$$P_{\rm NFmax} \approx 5 P_{\rm vmax}$$
 (36)

2.4.5 Lastwiderstand und maximal zulässiger Kollektorstrom. Fig. 12 kann^{*}man entnehmen:

> Fig. 11 Lage des Arbeitspunktes eines Treiber-Transistors

 \hat{u}_{Ct} maximale Kollektorwechselspannung des Treibers; U_{CMt} Spannung des Treiber-Kollektors gegen Masse; U_{EMt} Spannung des Treiber-Emitters gegen Masse; R_{Et} Emitterwiderstand des Treibers

Bull. SEV 61(1970)12, 13. Juni

$$R_{\rm L} = \frac{\hat{u}_{\rm NFmax}}{\hat{l}_{\rm c}} \text{ bzw. } R_{\rm Lmin} = \frac{\hat{u}_{\rm NFmax}}{I_{\rm cmax}} = \frac{U_{\rm b} - U_{\rm EMt} - 2\left(U_{\rm CErest} + \hat{u}_{\rm BE}\right)}{2 I_{\rm Cmax}}$$
(37)

2.4.6 Kondensator $C_{\rm L}$. Der 3-dB-Abfall bei tiefen Frequenzen ist bekanntlich gegeben durch

$$R_{\rm L} = \frac{1}{\omega_{\rm u} C_{\rm L}} \tag{38}$$

Damit wird

$$C_{\rm L} = \frac{1}{\omega_{\rm u} R_{\rm L}} = \frac{159 \cdot 10^3}{(f/\,{\rm Hz}) (R_{\rm L}/\Omega)} \,\mu\,{\rm F}$$
 (39)

2 4.7 Stabilisierung des Kollektorruhestromes. Um bei Spannungsansteuerung der beiden Endtransistoren die sog. B-Verzerrungen kleinzuhalten (Fig. 14), erhalten die Basen beider Transistoren eine Vorspannung.

2.4.7.1 Stabilisierung gegenüber Schwankungen der Batteriespannung. Die Basisvorspannung soll möglichst unabhängig sein von allfälligen Batteriespannungsänderungen. Dies wird in der Praxis erreicht mit einer in Durchlassrichtung betriebenen Si-Diode. Die erforderliche Basisvorspannung wird mit Hilfe des Spannungsteilers P von der stabilisierten Dioden-

Fig. 12

Spannungsbestimmung an den beiden Erdtransistoren $I_{\rm C}$ Kollektorstrom; $U_{\rm CE} + -U_{\rm CE}$ Kollektorgleichspannung; $U_{\rm bC}$ Spannung zwischen Batterie und Treiber-Kollektor; $U_{\rm CMt}$ Spannung zwischen Treiber-Kollektor und Masse; $U_{\rm CErest}$ Kollektor-Restspannung; $\hat{u}_{\rm NFmax}$ maximale NF-Ausgangsspannung; $\hat{u}_{\rm BE}$ Basis-Emitter-Wechselspannung; $R_{\rm L}$ Lastwiderstand; $R_{\rm Et}$ Emitterwiderstand des Treibers; $R_{\rm t}$ Treiberwiderstand

spannung abgegriffen (Fig. 15). Dabei muss beachtet werden, dass diese Widerstandskombination einschliesslich der Diode in Serie zum Treiberwiderstand R_t liegt und damit entsprechend berücksichtigt werden muss.

Der der Diode parallelliegende Spannungsteiler R_p errechnet sich wie folgt:

Durch die Diode fliesst etwa 70 % des Treiberstromes, durch die parallelliegende Widerstandskombination damit etwa 30 %. Mit der Näherungsformel für den Diodenwiderstand R_d :

$$R_{\rm d} = \frac{U_{\rm d}}{I_{\rm d}} \xrightarrow{U_{\rm d} \mid \text{Si-Dioden} = 0,7 \, \rm V} \xrightarrow{R_{\rm d} = \frac{0,7 \, \rm V}{I_{\rm d}}} (40)$$

und $I_d = 0,7 I_{Ct}$ wird:

$$R_{\rm d} = \frac{0.7 \,\mathrm{V}}{0.7 \,I_{\rm Ct}} = \frac{\mathrm{k}\Omega}{I_{\rm Ct} \,(\mathrm{mA})} \tag{41}$$

Ist weiter

R

$$\frac{R_{\rm d}}{R_{\rm p}} = \frac{I_{\rm p}}{I_{\rm d}} = \frac{3}{7} \tag{42}$$

so erhält man schliesslich für den gesamten, der Diode parallelliegenden Widerstand R_p :

$$R_{\rm p} = \frac{7\,\mathrm{k}\Omega}{3\,I_{\rm Ct}\,(\mathrm{mA})}\tag{43}$$

2.4.7.2 Stabilisierung gegenüber Temperaturschwankungen. Hierzu dienen sowohl die beiden Emitterwiderstände $R_{\rm E}$ als auch der NTC-Widerstand. In [1] wird für zwei Widerstandskombinationen (ohne Emitterwiderstände $R_{\rm E}$) die Abhängigkeit des Kollektorruhestromes von der Temperatur (Fig. 16 und 17) angegeben.

2.4.8 Transistorauswahl. Diese erfolgt nach der auftretenden und vom Transistor maximal aufnehmbaren Verlustleistung P_{vmax} . Hier spielt ausser der Gehäusetemperatur der Wärmewiderstand eine massgebliche Rolle. Es gilt (Fig. 18):

$$R_{\mathrm{itherm}} + R_{\mathrm{atherm}} = \frac{\Delta t}{P_{\mathrm{C+E}}} \approx \frac{\Delta t}{P_{\mathrm{vmax}}}$$
 (44)

In Gl. (44) ist:

$$\Delta t = t_{jmax} - t_{amb} \tag{45}$$

worin

t_{jmax} maximal zulässige Kristalltemperatur

*t*_{amb} maximal auftretende Umgebungstemperatur

t_{case} Gehäusetemperatur

RthG Ritherm

- thermischer Widerstand des Transistorsystems zum Gehäuse
- Ratherm thermischer Aussenwiderstand, der von der Grösse der benutzten Kühlfläche und der Art der Transistorbefestigung abhängt

Fig. 19 zeigt den Zusammenhang zwischen dem thermischen Aussenwiderstand und der Kühlfläche.

Fig. 13
Graphische Darstellung der Funktion

$$P_{\rm NF} = \frac{U_{\rm b}^2}{8R_{\rm L}}$$

 $P_{\rm NF}$ Ausgangsleistung; $U_{\rm b}$ Batteriespannung; $R_{\rm L}$ Lastwiderstand

Beispiel 1: Der Transistor AC 175 (Germanium-npn-Transistor für Endstufen mittlerer Leistung kann zusammen mit dem AC 117 als Komplementärpärchen geliefert werden) wird mit einer Verlustleistung $P_{\rm v}=0.8~{\rm W}$ betrieben. Umgebungstemperatur $t_{amb} =$ 50 °C.

Frage: Wie gross ist die benötigte Kühlfläche A_K?

AC 175:
$$t_{\rm j} = 90 \ {}^{0}{\rm C}$$
; $R_{\rm thG} = 40 \ {}^{0}{\rm C}/{\rm W}$

Nach Gl. (44) ist:

$$R_{\text{atherm}} = \frac{\Delta t}{P_{\text{v}}} - R_{\text{thG}} =$$
$$= \frac{(90 - 50) \,^{0}\text{C}}{0.8 \,\text{W}} - 40 \,^{0}\text{C} = 10 \,^{0}\text{C/W}$$

Durch zusätzliche Verwendung einer Glimmerscheibe zur Isolation verringert sich der zulässige thermische Widerstand auf:

$$R'_{\rm atherm} = (10 - 1, 3) \, {}^{0}{
m C/W} =$$

Nach Fig. 19 werden damit benötigt:

$A_{\rm K} = 90 \, {\rm cm}^2$

Beispiel 2: NF-Verstärker mit Komplementär-Transistorpaar AC 187 K + AC 188 K

 $= 8,7 \, {}^{0}C/W$

Batteriespannung = 12 V $U_{\rm b}$ Lastwiderstand $R_{\rm L}$ $= 4 \Omega$ Umgebungstemperatur $t_{amb} = 45 \, {}^{0}\text{C}$

- Fragen: 1. Wie gross ist der Emitterwiderstand?
 - 2. Wie gross ist die Kollektorrestspannung?

 - Wie gross ist die Koncktonetspannung?
 Wie gross ist die maximale NF-Leistung?
 Wie gross ist die maximale Verlustleistung?
 - 5. Wie gross ist das Kühlblech?

1. Nach der Tabelle I wird gewählt:

$$R_{\rm L} = 4\,\Omega
ightarrow R_{\rm E} = 0.5\,\Omega$$

2. Nach Gl. (11) und der Näherung nach Gl. (14) wird:

Spannungssteuerkennlinie der Endstufen-Komplementär-Transistoren AC 187 K und AC 188 K mit und ohne Basis-Vorspannung Bezeichnungen siehe Fig. 13

$$i_{\rm c} \approx \frac{U_{\rm b}}{2(R_{\rm L}+R_{\rm E})} \approx I_{\rm C} = \frac{12\,{\rm V}}{2\cdot4.5\,\Omega} = 1,33\,{\rm A}$$

5 6 7 9 9 10

Die Kollektorrestspannung beträgt bei $I_{\rm C} = 1,33$ A etwa:

$$U_{\mathrm{CErest}}=0,7~\mathrm{V}$$

3. Nach Gl. (13) wird bei Vernachlässigung von $U_{\rm EMt}$ und $\hat{u}_{\rm BE}$:

$$P_{\rm NFmax} = \frac{(U_{\rm b} - 2 U_{\rm CErest})^2}{8 (R_{\rm L} + R_{\rm E})^2} R_{\rm L} = \frac{(12 - 1.4)^2}{8 (4 + 0.5)^2} 4 = 2.8 \text{ W}$$
$$P_{\rm NFmax} = 2.8 \text{ W}$$

4. Nach Gl. (24) ist:

U

$$P_{
m vmax} = rac{U_{
m b}^2}{R_{
m L} + R_{
m E}} \cdot rac{1}{4\,\pi^2} = rac{144}{4,5\cdot 4\,\pi^2} = 0,8~{
m W}$$
 $P_{
m vmax} = 0,8~{
m W}$

5. Kühlblech: Nach Gl. (44) ist mit
$$R_{\text{thG}} = 45 \text{ }^{0}\text{C/W}$$
 (AC 187K)

$$R_{\text{atherm}} = \frac{t_{\text{j}} - t_{\text{amb}}}{P_{\text{vmax}}} - R_{\text{thG}} = \frac{(90 - 45)}{0.8} - 45^{\circ} = 11.2^{\circ} \text{C/W}$$

Erforderliches Kühlblech nach Fig. 18:

$$A_{\rm K}=55~{
m cm}^2$$

2.4.9 Komplementär-Transistortypen sind in Tabelle II zusammengestellt.

2.5 Berechnung der Treiberstufe

Die Spannungsverstärkung der Endstufe ist kleiner als eins (Kollektorstufe!). Damit muss die gesamte NF-Ausgangsspannung von der Treiberstufe geliefert werden. Der Arbeitspunkt der Treiberstufe wird zweckmässig bei etwa $U_{\rm CE} = U_{\rm b}/2$ gelegt, wie Fig. 11 bereits zeigte. Die Widerstandsgerade

Tabelle II

pnp				npn					
Тур	P _{tot} W	°C ℓcase	$R_{ m thG}$ °C/W	R _{thU} °C/mW	Тур	P _{tot} W	t _{case} °C	$R_{ m thG}$ °C/W	R _{thU} °C/mW
AC 117	1,1	45	40	0,25	AC 175	1,1	45	40	0,25
AC 128	0,75	60	40	0,29	AC 127	0,275	60	110	0,37
AC 132	0,5	60	50	0,3	AC 127	0,275	60	110	0,37
AC 131	0,75	45		0,3	AC 186	0,75	45		0,3
AC 178	1,1	45	40	0,25	AC 179	1,1	45	40	0,25
AC188K	0,67	60	45	0,16	AC187K	0,67	60	45	0,16
AC188K	1,0	45			AC187K	1,0	45		
AD 162	6,0	60	4,5		AD 161	4,0	60	4,5	
AD 164	6,0	45	7,5		AD 165	5,3	45	8,5	

innerhalb des Treiberkennlinienfeldes ist bestimmt durch den statischen und dynamischen Treiberwiderstand Rt.

Stabilisierungsschaltung P Potentiometer; R_E Emitterwiderstand; NTC NTC-Widerstand Weitere Bezeichnungen siehe Fig. 13

2.5.1 Statischer Treiberwiderstand. Dieser setzt sich zusammen aus dem Kollektorwiderstand der Treiberstufe Rt einschliesslich der Widerstandskombination zur Erzeugung der stabilisierten Basisvorspannung und dem Lastwiderstand $R_{\rm L}$:

$$R_{\rm tsta} = R_{\rm t} + R_{\rm L} \tag{46}$$

2.5.2 Dynamischer Lastwiderstand Rtdyn.

2.5.2.1 Berechnung. Dem statischen Kollektorwiderstand $R_{\rm t}$ wird der Eingangswiderstand der folgenden Endstufe parallel geschaltet. Bei der Berechnung dieses Eingangswiderstandes

Prinzipschaltbild für die Stabilisierung des Kollektor-Ruhestromes $I_{\rm Cr}$ Kollektorruhestrom; P_2 Potentiometer; R_8 , R_9 , R_{10} , R_{11} Widerstand; $U_{\rm b}$ Batteriespannung

kann der jeweils gesperrte Endstufentransistor fortgelassen werden, womit man das der Fig. 20a entsprechende Ersatzbild nach Fig. 20b erhält.

Vernachlässigt man zunächst auch noch den Emitterwiderstand der Treiberstufe REt, so erhält man das der Fig. 18b entsprechende weitere Ersatzschaltbild von Fig. 21. Dieser Figur entnimmt man nun folgende Strom- und Spannungsverhältnisse:

Eingangsspannung:

Verlauf des Kollektor-Ruhestromes $I_{\rm Cr}$ in Abhängigkeit von der Gehäuse-temperatur $t_{\rm case}$ bei Verwendung des Basis-Spannungsteilers $a R_8 = 2000 \ \Omega, R_9 = 500 \ \Omega, R_{10} = 390 \ \Omega, P_2 = 500 \ \Omega$ $b R_8 = 240 \ \Omega, R_9 = 130 \ \Omega, R_{10} = 82 \ \Omega, P_2 = 100 \ \Omega$

Mit
$$i_{\rm E} \approx i_{\rm C} = B i_{\rm B}$$
 ist:

$$u_{\rm e} = u_{\rm BE} + i_{\rm B} \left(R_{\rm E} + R_{\rm L} \right) B \tag{48}$$

Eingangsstrom:

$$i_{\rm e} = i_{\rm B} + i_{\rm t} \tag{49}$$

$$i_{\rm t} = \frac{U_{\rm BE} + i_{\rm E} R_{\rm E}}{R_{\rm t}} = \frac{u_{\rm BE} + B i_{\rm B} R_{\rm E}}{R_{\rm t}}$$
(50)

$$i_{\rm e} = i_{\rm B} + \frac{u_{\rm BE} + B \, i_{\rm B} \, R_{\rm E}}{R_{\rm t}} \tag{51}$$

Mit den Gl. (48) und (51) wird der Eingangswiderstand der Gegentaktendstufe und damit der dynamische Lastwiderstand der Treiberstufe:

$$R_{\rm tdyn} = \frac{u_{\rm e}}{i_{\rm e}} = \frac{u_{\rm BE} + i_{\rm B} B (R_{\rm E} + R_{\rm L})}{i_{\rm B} + \frac{u_{\rm BE} + Bi_{\rm B} R_{\rm E}}{R_{\rm t}}} \cdot \frac{1}{i_{\rm B}} =$$

$$= R_{\rm t} \frac{u_{\rm BE}/i_{\rm B} + B (R_{\rm E} + R_{\rm L})}{R_{\rm t} + B R_{\rm E} + u_{\rm BE}/i_{\rm B}}$$
(52)

Bull. SEV 61(1970)12, 13 juin

Zur Definition der thermischen Widerstände t_{j} Kristalltemperatur; t_{case} Gehäusetemperatur; t_{amb} Umgebungstemperatur; $R_{j \text{ therm}}$ innerer Wärmewiderstand; $R_{a \text{ therm}}$ äusserer Wärmewiderstand

$$R_{\rm tdyn} = R_{\rm t} \frac{u_{\rm BE}/i_{\rm B} + B R_{\rm E} + B R_{\rm L}}{\mu_{\rm BE}/i_{\rm B} + B R_{\rm E} + R_{\rm t}}$$
(53)

Der statische Arbeitswiderstand der Treiberstufe setzte sich zusammen aus [Gl. (46)]:

$$R_{\rm tsta} = R_{\rm t} + R_{\rm L} \approx R_{\rm t}$$

Der statische Treiberwiderstand R_{tsta} ist damit unter der Bedingung gleich dem dynamischen R_{tdyn} , wenn die Bedingung erfüllt ist:

$$R_{\rm t} = B R_{\rm L} \tag{54}$$

Dabei ist in R_t noch die Dioden-Widerstandskombination zur Erzeugung der Basisvorspannung enthalten!

2.5.2.2 Diskussion

a)
$$R_{\rm t} < B R_{\rm L} \rightarrow R_{\rm tdyn} > R_{\rm tsta}$$
 (55)

In diesem Fall wird zwar die mögliche Aussteuerung, wie Fig. 22 zeigt, geringfügig vergrössert, dafür wird aber der Ruhestrom der Treiberstufe bei konstanter Verzerrung relativ zur erzielbaren Aussteuerung zu gross.

In diesem Fall wird bei konstanter Verzerrung die Aussteuerung stark verkleinert, womit ja auch die NF-Spannung am Lastwiderstand abnimmt (Fig. 23). Damit ist aus Gründen möglichst kleiner Verzerrungen, verbunden mit einem möglichst geringen Ruhestrom der Treiberstufe, der Treiberwiderstand R_t nach Gl. (54) zu bestimmen. Im Zweifelsfall ist $R_t < B R_L$ zu wählen, wobei für die Stromverstärkung *B* jeweils die minimale Stromverstärkung der Gegentaktendstufe einzusetzen ist.

$$R_{\rm t} < B_{\rm min} R_{\rm L} \tag{56}$$

2.5.3 Anschluss des Treiberwiderstandes R_t an den Lastwiderstand R_L . In den Fig. 20 bzw. 12 fällt auf, dass R_t nicht an den Minuspol der Batterie, sondern an den Lastwiderstand $R_{\rm L}$ geführt ist. Der Grund ist die nur in diesem Falle mögliche volle symmetrische Aussteuerung der beiden Endstufen-Transistoren, wie anhand des idealisierten Ausgangskennlinienfeldes einer Treiberstufe nach Fig. 24 gezeigt ist.

2.5.3.1 R_t liegt am Minuspol der Batterie. In diesem in der Praxis nicht verwirklichten Fall setzt sich der dynamische Lastwiderstand, wie Fig. 21 zeigt, zusammen aus der Parallelschaltung von R_t und $R_{tdyn} | R_t = \infty$. Nach Gl. (52) ist:

$$R_{\text{tdyn}} | R_{\text{t}} = \infty = \frac{u_{\text{BE}} + i_{\text{B}} B (R_{\text{E}} + R_{\text{L}})}{i_{\text{B}} + 0} =$$

$$= \frac{u_{\text{BE}}}{i_{\text{B}}} + B (R_{\text{E}} + R_{\text{L}}) \approx B R_{\text{L}}$$
(57)

Endstufe mit Treiberstufe (a) und die daraus folgende Ersatzschaltung zur Berechnung des dynamischen Lastwiderstandes (b)

Bezeichnungen siehe Fig. 15

Berechnet man mit diesem Widerstand die maximale NF-Spannung \hat{u}_{Ct} der Treiberstufe, so wird (Fig. 24):

$$\hat{a}_{\mathrm{Ct}} = \hat{i}_{\mathrm{Ct}} R_{\mathrm{dyn}} = \hat{i}_{\mathrm{Ct}} \frac{R_{\mathrm{t}} \cdot B R_{\mathrm{L}}}{R_{\mathrm{t}} + B R_{\mathrm{L}}}$$
 (58)

Nach der in Fig. 24 gemachten Näherung ist:

$$\hat{i}_{\rm Ct} = I_{\rm C0} = \frac{U_{\rm b}/2}{R_{\rm t}} = \frac{U_{\rm b}}{2 R_{\rm t}}$$
 (59)

Gl. (59) in (58) eingesetzt, ergibt für die mit dieser Schaltung erzielbare maximale NF-Amplitude der Treiberstufe:

$$\hat{u}_{\rm Ct} = \frac{U_{\rm b}}{2} \cdot \frac{B R_{\rm L}}{R_{\rm t} + B R_{\rm L}} = \frac{U_{\rm b}}{2} \cdot \frac{1}{1 + R_{\rm t}/B R_{\rm L}}$$
 (60)

Ersatzschaltbild der Treiber- und Endstufe zur Berechnung des dynamischen Treiberlastwiderstandes

 $i_{\rm B}$, $i_{\rm C}$, $i_{\rm E}$ Transistorwechselstrom; $i_{\rm e}$ Eingangsstrom der Endstufe; $i_{\rm t}$ Treiberstrom; $u_{\rm e}$ Eingangsspannung der Endstufe; $u_{\rm L}$ Spannung am Lastwiderstand; $u_{\rm BE}$ Basis-Emitterspannung; $R_{\rm t}$ Treiberwiderstand; $R_{\rm L}$ Lastwiderstand; $R_{\rm E}$ Emitterwiderstand

Widerstandsgrade für R_{t} (BR_{L})

A Arbeitspunkt des Treibers; $R_{\rm t}$ Treiberwiderstand; $R_{\rm t\,dyn}$ dynamischer Lastwiderstand des Treibers; u_1 untere Aussteuergrenze; u_2 obere Aussteuergrenze

 $\hat{u}_{\rm Ct}$ ist also immer kleiner als $U_{\rm b}/2$, wenn $R_{\rm t}$ an den Minuspol der Batterie angeschlossen wird.

2.5.3.2 Rt liegt am Lastwiderstand RL. Wird der Treiberwiderstand Rt, wie in Fig. 20 gezeigt, an den Lastwiderstand R_L geführt, so kann der dynamische Lastwiderstand der Treiberstufe R_{tdyn} gleich dem statischen gemacht werden. Es war nach Gl. (54):

$$R_{\rm t} = B R_{\rm L} \rightarrow R_{\rm tdyn} = R_{\rm t}$$

Eingesetzt in Gl. (58) und (59), erhält man:

$$\hat{u}_{\mathrm{Ct}} = \hat{i}_{\mathrm{Ct}} R_{\mathrm{dyn}} = \frac{U_{\mathrm{b}}}{2 R_{\mathrm{t}}} R_{\mathrm{t}} = \frac{U_{\mathrm{b}}}{2}$$

Bei der hier vorliegenden Schaltung kann also im Idealfall die maximale NF-Amplitude der Treiberstufe gleich der halben Batteriespannung werden.

2.5.4 Arbeitspunkteinstellung der Treiberstufe.

2.5.4.1 Kollektorwiderstand. Der Kollektorwiderstand der Treiberstufe Rt ist bekanntlich durch die minimale Stromverstärkung B_{\min} der Endstufe und den Lastwiderstand R_{L} bestimmt [s. Gl. (56)].

$$R_{\rm t}=B_{
m min}~R_{
m L}$$

2.5.4.2 Emitterwiderstand $R_{\rm Et}$. Der Emitterwiderstand $R_{\rm Et}$ stabilisiert den Arbeitspunkt der Treiberstufe bei Temperaturschwankungen. Eine ausreichende Stabilisierung wird dann erreicht, wenn die Spannung $U_{\rm EMt}$ am Emitterwiderstand $R_{\rm Et}$ etwa 300...800 mV beträgt. Für REt erhält man somit:

$$R_{\rm Et} = \frac{U_{\rm EMt}}{I_{\rm Ct}} \tag{61}$$

Widerstandsgerade für $R_{\rm t} > BR_{\rm L}$ A Arbeitspunkt des Treibers; u_1 ; u_2 Aussteuergrenze Weitere Bezeichnungen siehe Fig. 21

2.5.5 Auswahl des Treibertransistors. Die Auswahl wird weitgehend bestimmt durch die im Treibertransistor auftretende Verlustleistung. Nach Fig. 11 ist:

$$P_{\rm vt} = I_{\rm Ct} U_{\rm CEt} = I_{\rm Ct} \left[U_{\rm b} - (U_{\rm CErest} + U_{\rm EMt}) \right] \tag{62}$$

2.5.6 Emitterkondensator. Entsprechend Gl. (39) erhält man für den Emitterkondensator:

$$C_{\rm Et} = \frac{1}{\omega_{\rm u} R_{\rm Et}} = \frac{159 \cdot 1000}{f (\rm Hz) R_{\rm Et} (\Omega)} \,\mu \rm F \tag{63}$$

3. Widerstandsnormwerte

Die Widerstandswerte sind durch die CEI (Commission Electrotechnique Internationale) genormt. Und zwar beträgt allgemein der Stufensprung von Widerstandswert zu Widerstandswert 1/10.

Idealisiertes Ausgangskennlinienfeld eines Treiber-Transistors \hat{i}_{Ct} maximale Stromamplitude des Treibers; \hat{u}_{Ct} maximale Spannungsamplitude des Treibers; $U_{\rm b}$ Batteriespannung Weitere Bezeichnungen siehe Fig. 21 und 22

Beispiel: Eine Dekade soll in 6 Stufen geteilt werden. Damit ergibt sich der Stufensprung zu

$$\sqrt[6]{10} = 1,468$$

woraus man die Werte der Widerstandswerte der Reihe E 6 abgerundet erhält:

Reihe E 6: 1,0; 1,5; 2,2; 3,3; 4,7; 6,8.

Literatur

- NF-Verstärker mit komplementären Transistoren in der Gegentakt-B-Endstufe. Telefunken Röhren- und Halbleitermitteilungen für die Indu-strie -(1965)6503-114.
- NF-Verstärker mit komplementären Germanium-Transistoren in der Gegentakt-Endstufe und Silizium-Transistoren in der Vor- und Treiber-stufe. Telefunken Röhren- und Halbleitermitteilungen für die Industrie –(1965)6509–121. [2]
- [3] Schaltungsbeispiele für NF-Verstärker mit Komplementär-Germanium-Transistorpaaren in der Endstufe. Telefunken Röhren- und Halbleiter-mitteilungen für die Industrie -(1967)6712-138.
- Transistor-NF-Verstärker mit eisenlosen Endstufen. Technische Mitt. Halbleiter (Siemens) 2-6300-118. [4]
- [5] Niederfrequenz-Leistungsverstärker. Technische Mitt. Halbleiter (Siemens)2-6300-125.
- [6] Transformatorlose Transistoren-NF-Verstärker mit Komplementär-End-stufe. Valvo techn. Information für die Industrie –(1962)33.
- sture. Valvo techn. Information fur die Industrie –(1962)33.
 [7] Übertragerlose Transistor-NF-Verstärker mit Gegentakt-B-Endstufe für 10 W und 2,5 W. Valvo techn. Information für die Industrie –(1963)49.
 [8] Telefunken-Laborbuch für Entwicklung, Werkstatt und Service. Bd. 4, 2. Auflage, München, Franzis-Verlag, 1968.
 [9] A. Hauenstein: Eisenlose NF-Verstärker mit Transistoren. Dimensionie-rung und Berechnung. 1. Teil. Funkschau 41(1969)20, S. 719...722.
 [10] Valvo-Handbuch. Halbeiterdioden und Transistoren Standardtunen
- Valvo-Handbuch. Halbleiterdioden und Transistoren, Standardtypen 1966-67. Hamburg, Valvo GmbH, 1967. [10]

Adresse des Autors:

Oberbaurat Dr.-Ing. W. Henne, Rudolf-Diesel-Polytechnikum der Stadt Augsburg, Baumgartnerstrasse 16, Augsburg.