Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 62 (1971)

Heft: 4

Artikel: Das transiente Verhalten und die dynamische Stabilität von

symmetrischen Drehstromasynchromaschinen bei veränderlicher

Primärfrequenz

Autor: Lorenzen, H.W.

DOI: https://doi.org/10.5169/seals-915803

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Das transiente Verhalten und die dynamische Stabilität von symmetrischen Drehstromasynchronmaschinen bei veränderlicher Primärfrequenz 1)

Von H. W. Lorenzen, Baden

621.313.333.025.3

Verzeichnis der im Text verwendeten, aber nicht erläuterten Formelzeichen

Tabelle I

Wendet	man	die	Variation	der	P
alsteueru	ng v	on	Drehstron	n-As	v

Primärfrequenz zur Drehynchron-Motoren an, so stellt sich u. U. die Frage nach der dynamischen Stabilität der Asynchronmaschine innerhalb des elektromechanischen Verbandes. Es hat sich nämlich gezeigt [2]2, dass Drehstrom-Asynchronmaschinen in gewissen Fällen bei herabgesetzter Primärfrequenz selbsterregter Torsionsschwingungen fähig sind. Während nun aber in [2] die Abhängigkeit der Resonanzfrequenz und des Dämpfungskoeffizienten D_{ε} (Dämpfungskoeffizient gegenüber erzwungenen Drehschwingungen) von der Primärfrequenz beschrieben worden ist, werden hier die Eigenwerte die das transiente Verhalten des elektromechanischen Verbandes in der Nähe des stationären Betriebszustandes bestimmen, abhängig von der Primärfrequenz untersucht. Die Bestimmung der Eigenwerte, der transienten Ströme, der transienten Drehgeschwindigkeiten und der magnetischen Flüsse geschieht nach einer in [2; 3] beschriebenen Methode. Erwähnt sei, dass auch in früheren Arbeiten [4; 5] sehr wertvolle Einsichten zu diesem Fragenkomplex vermittelt worden sind. Der entscheidende Unterschied der vorliegenden Arbeit zu den erwähnten, früher erschienenen liegt in den einschränkenden Annahmen3).

1. Einleitung

In der vorliegenden Arbeit wird vor allem der Einfluss der Maschinenkenngrössen auf die Eigenwerte der Asynchronmaschine bei variabler Primärfrequenz beschrieben.

Sind nämlich die Realteile der Eigenwerte, die Dämpfungskoeffizienten, negativ dann ist dynamisch stabiles Betriebsverhalten der Asynchronmaschine bzw. des elektromechanischen Verbandes zu erwarten. Sind sie dagegen positiv, dann muss mit dynamischer Instabilität gerechnet werden.

2. Voraussetzungen

Um die Ergebnisse übersichtlicher zu halten, das Wesentliche zu erkennen und den Rechenaufwand zu begrenzen, werden folgende einschränkende Annahmen getroffen.

- 1. Da hier im wesentlichen das Betriebsverhalten der Drehstrom-Asynchronmaschine bzw. des elektromechanischen Verbandes selbst untersucht werden soll, wird der Einfluss regelnder oder steuernder Glieder und der Einfluss der Eigenschaften des Umrichters selbst nicht berücksichtigt.
- 2. Da nur die relativ tiefen Primärfrequenzen interessieren, werden nur die Spannungsgrundschwingungen berücksichtigt. Deren Frequenz wird im folgenden als Primärfrequenz f_1 bezeichnet. Die

2) Siehe Literatur am Schluss des Aufsatzes.

Grösse	Einheit	Bedeutung				
d_{W}	Ws	Koeffizient, der die Abhängigkeit des am Motor angreifenden Belastungsdrehmoments von der Drehgeschwindigkeit wiedergibt				
d_{WA}	Ws	Koeffizient, der die Abhängigkeit des von Arbeitsmaschine entwickelten Belastungsdrehmoments von der Drehgeschwindigkeit ausdrückt.				
L_1	Н	totaler Selbstinduktionskoeffizient der Primärwicklung [8], Gl. (47)				
$L_{ m R}$	Н	totaler Selbstinduktionskoeffizient einer Käfigmasche [8], Gl. 56.				
M	Н	Gegeninduktivität [8], Gl. (18)				
p	_	Polpaarzahl				
t	S	Zeit				
U_1	V	Effektivwert der Statorstrangspannung				
Z_2	_	Läuferstabzahl				
$\varphi_{\mathrm{u}1}$	_	Phasenwinkel				

Spannungssysteme, die durch die Spannungsoberschwingungen erzeugt werden, sind vernachlässigt. Die Spannungen der Grundschwingungen bilden ein symmetrisches Drehspannungssystem, so dass nach [3; 8] ein Raumzeiger der Spannungen⁴)

$$ec{u}_{1{
m St}}=ec{U}_1\,{
m e}{
m j}\,\omega_1{
m t}/\!\sqrt{2}$$
mit $ec{U}_1=U_1\,{
m e}{
m j}\,arphi_1\,{
m und}\,\omega_1=2\,\pi\,f_1$

entsteht. Es wirken damit von Seiten des elektrischen Netzes keine stationären Störungen auf die Asynchronmaschine ein.

- 3. Der elektromechanische Verband besteht aus der Asynchronmaschine, deren Rotordrehmasse $\Theta_{\rm m}$ ist, der Drehmasse $\Theta_{\rm A}$ der Arbeitsmaschine und der drehelastischen Welle mit dem Federkennwert $c_{\rm w}$, die die Drehmassen mechanisch verbindet (Fig. 1). Sowohl an der Motordrehmasse wie an der der Arbeitsmaschine greifen Belastungsdrehmomente an, die von den jeweiligen Drehgeschwindigkeiten ω_{m} und ω_{A} bzw. den Drehzahlen n_{M} und n_{A} in beliebiger Weise abhängen. Die Belastungsdrehmomente enthalten keine zeitlich periodisch verlaufende «Stör»-Drehmomente.
- 4. Es wird nur die «nähere» Umgebung eines stationären Betriebszustandes untersucht. Die Ströme ,die Drehmomente, die magnetischen Flüsse und die Drehgeschwindigkeiten setzten sich jeweils aus stationären Anteilen und «Abweichungen» zusammen [2; 3]. Es wird angenommen, dass die Bedingungen [3], Gl. (44) und Gl. (45) erfüllt sind. Die Belastungsdrehmomente werden jeweils durch eine nach dem linearen Gliede abgebrochene Taylor-Reihe ersetzt. Für den Motor gilt dann (Fig. 1).

$$W_{\mathrm{M}}(n_{\mathrm{M}}) = W_{\mathrm{M}}(n_{\mathrm{B}}) + \left(\frac{\partial W_{\mathrm{m}}}{\partial n_{\mathrm{M}}}\right)_{(n_{\mathrm{M}} = n_{\mathrm{B}})} \cdot (n_{\mathrm{M}} - n_{\mathrm{B}})$$
mit
$$n_{\mathrm{M}} = \frac{\omega_{\mathrm{m}}}{2\pi} = \frac{\dot{g}_{\mathrm{M}}}{2\pi} = \frac{\dot{g}_{\mathrm{M}}}{2\pi p}$$
(1)

¹⁾ Dieser Aufsatz stellt die überarbeitete und ergänzte Fassung des zweiten Teils des Vortrages «Umrichterspeisung von Asynchronmotoren» dar, der von M. Brüderlink, H. W. Lorenzen und H. Stemmler auf der VDE-Fachtagung anlässlich des 50. Todestages von Michael von Dolivo-Dobrowolsky in Darmstadt gehalten wurde.

³⁾ Erwähnt sei ferner, dass nach Abfassung dieses Beitrages weitere Arbeiten zu diesem Thema veröffentlicht worden sind [6; 7].

⁴⁾ Formelzeichen, die nicht im Text erklärt werden, sind in Tabelle I erläutert.

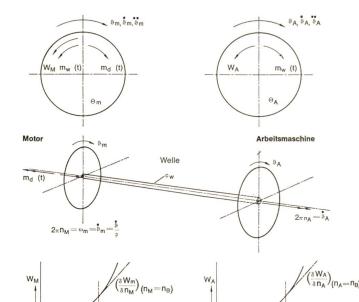


Fig. 1
Mechanisches Ersatzbild des Antriebs (Motor, Welle, Arbeitsmaschine),
Koordinaten und Bezeichnungen

Entsprechend ergibt sich für die Arbeitsmaschine:

$$W_{A}(n_{A}) = W_{A}(n_{B}) + \left(\frac{\partial W_{A}}{\partial n_{A}}\right)_{(n_{A} = n_{B})} (n_{A} - n_{B})$$

$$n_{A} = \frac{\omega_{A}}{2 \pi} = \frac{\dot{\vartheta}_{A}}{2 \pi}$$
(2)

Dabei ist unter $n_{\rm B}$ die «mittlere», stationäre Drehzahl des Verbandes $n_{\rm B}=n_{\rm MO}=n_{\rm AO}=\omega_{\rm mo}/2\pi$ zu verstehen.

- 5. Der Sättigungszustand der Maschine ist konstant und die Stromverdrängung wird vernachlässigt.
- 6. Die Wirkung der magnetischen Luftspaltoberfelder wird nur in Form der nicht gedämpften doppelt verketteten Streuung erfasst. Parasitäre Drehmomente als Folge der magnetischen Luftspaltoberfelder bleiben ausser acht.

3. Das transiente Betriebsverhalten in der «näheren» Umgebung eines stationären Betriebszustandes

Unter den getroffenen Annahmen lassen sich die Raumzeiger der Stator- und der transformierten Rotorströme nach [2; 3] durch Raumzeiger der stationären Ströme und «Abweichungen» ersetzen:

$$\vec{i}_{1\text{St}} = \frac{\vec{I}_1}{\sqrt{2}} e^{j\omega_1 t} + \vec{i}_{1\text{St}\Delta}$$
 (3)

$$\vec{i}_{1L}' = \frac{\vec{I}_2}{\sqrt{2}} e^{j\omega_1 t} + \vec{i}_{1L\Delta}'$$
 (4)

Bezeichnet man den Real- bzw. Imaginärteil des Raumzeigers $\vec{i}_{1\text{St}}$ mit $i_{1\text{StR}}$ bzw. $i_{1\text{Sti}}$ dann lauten die drei Stator-Strangströme wie folgt [2; 8]:

$$i_{A} = 2 i_{StR}$$

 $i_{B} = -i_{1StR} + \sqrt{3} \cdot i_{Sti}$
 $i_{C} = -\sqrt{3} \cdot i_{1Sti} - i_{1StR}$

Führt man, um den Anschluss an [2; 3; 8] vollständig herzustellen, statt der Drehgeschwindigkeiten $\dot{\beta}_{\rm m}$ und $\dot{\beta}_{\rm A}$ die Schlupfe s und $s_{\rm A}$ ein

$$\frac{\dot{g}}{p} = \dot{g}_{\rm m} = \omega_{\rm m} = \frac{\omega_1}{p} (1 - s) \tag{6}$$

$$\dot{\vartheta}_{A} = \omega_{A} = \frac{\omega_{1}}{p} (1 - s_{A}) \tag{7}$$

dann kann man diese durch den stationären Schlupf so

$$s_0 = \frac{f_2}{f_1} = \frac{2\pi f_2}{2\pi f_1} = \frac{\omega_2}{\omega_1} = \frac{\omega_8 - \omega_{m0}}{\omega_8}$$
 (8)

mit $\omega_{\rm S} = \omega_1/p$ und $\omega_{\rm m0} = \omega_{\rm A0} = 2 \pi n_{\rm B} = \dot{\theta}_{\rm m0} = \dot{\theta}_{\rm A0}$, und die Abweichungen $s_{\rm A}$ bzw. $s_{\rm AA}$ ersetzen:

$$s = s_0 + s_{\Delta} \tag{9}$$

$$s_{\rm A} = s_0 + s_{\rm A\Delta} \tag{10}$$

Darin bezeichnet $\omega_1 = 2\pi f_1$ die Kreisfrequenz der stationären Statorströme und $\omega_2 = 2\pi f_2$ die Kreisfrequenz der stationären Rotorströme. Die Belastungsdrehmomente Gl. (1) und Gl. (2) lauten dann:

$$W_{\rm M}(s) = W_{\rm M}(s_0) - d_{\rm W}(s - s_0)$$
 (11)

$$W_{\rm A}(s_{\rm A}) = W_{\rm A}(s_0) - d_{\rm WA}(s_{\rm A} - s_0)$$
 (12)

Der Raumzeiger des totalen magnetischen Statorflusses ergibt nach [8; 9] sich zu

$$\vec{\Psi}_{1\text{Sttot}} = L_1 \vec{i}_{1\text{St}} + M \vec{i}_{1\text{L}} = \frac{\vec{\Psi}_{1\text{Sttot}}}{\sqrt{2}} e^{j \omega_1 t} + \vec{\Psi}_{1\text{Sttot}\Delta}$$
(13)

während man für den transformierten Raumzeiger des totalen Statorflusses folgenden Ausdruck erhält

$$\vec{\varPsi}'_{1\text{Ltot}} = \vec{\varPsi}_{1\text{Ltot}} \, e^{j\vartheta} = \frac{3}{z_2} \, M \, \vec{i}_{1\text{St}} + L_{\text{R}} \, \vec{i}'_{1\text{L}} =$$

$$= \frac{\hat{\vec{\varPsi}}'_{1\text{L}}}{|\sqrt{2}|} \, e^{j\,\omega_1 t} + \vec{\varPsi}'_{1\text{Ltot}\Delta}$$
(14)

Die stationäre Drehgeschwindigkeit des Antriebs ω_{m0} bzw. der stationäre Schlupf s_0 ist dadurch festgelegt, dass die Summe der mittleren Belastungsdrehmomente $W_{\rm M}(s_0)$ und $W_{\rm A}(s_0)$ gleich dem von der Asynchronmaschine entwickelten stationären Drehmoment $M_{\rm da}$ sein muss:

$$M_{\rm da} = W_{\rm m}(s_0) = W_{\rm M}(s_0) + W_{\rm A}(s_0)$$
 (15)

Über die Abhängigkeit der Zeiger der stationären Ströme \vec{I}_1 , \vec{I}_2 , und die des Schlupfes s_0 von den Kenngrössen der Asynchronmaschine einerseits und dem resultierenden stationären Drehmoment $W_{\rm m}(s_0)$ anderseits wird in [2] so ausführlich berichtet, dass man hier auf Einzelheiten nicht einzugehen braucht.

Wenn keine stationären Störungen auf den elektromechanischen Verband einwirken — das wurde ja vorausgesetzt — dann stellen $\vec{i}_{1\text{St}\Delta}$ bzw. $\vec{i}_{1\text{L}\Delta}'$ die Raumzeiger der transienten Ströme und $\vec{\Psi}_{1\text{Sttot}\Delta}$ bzw. $\vec{\Psi}_{1\text{Ltot}\Delta}'$ die Raumzeiger der transienten magnetischen Flüsse dar, während s_{Δ} und $s_{\Delta\Delta}$ die transienten Schlüpfe sind (Tabelle II). Die drei Eigenkreisfrequenzen Ω_{E1} , Ω_{E2} und Ω_{EV} und die vier Dämpfungskoeffizienten D_1 , D_2 , D_3 und D_{V} sind die negativen Real- bzw.

mit

Tabelle II

$$0 = f_7'^* \Omega'^7 + f_6'^* \Omega'^6 + f_5'^* \Omega'^5 + f_4'^* \Omega'^4 + f_3'^* \Omega'^3 + f_2'^* \Omega'^2 + f_1'^* \Omega' + f_0'^*$$
(16)

die, von nicht interessierenden Sonderfällen abgesehen, stets so lauten:

$$\Omega'_{1,2} = \omega_{1} \, \varepsilon'_{1,2} = -D_{1} \pm j \, \Omega_{E1}
\Omega'_{3,4} = \omega_{1} \, \varepsilon'_{3,4} = -D_{2} \pm j \, \Omega_{E2}
\Omega_{5'} = \omega_{1} \, \varepsilon_{5'} = -D_{3}
\Omega'_{6,7} = \omega_{1} \, \varepsilon'_{6,7} = -D_{V} \pm j \, \Omega_{EV}
D_{1} = \omega_{1} \, d_{1}; \, \Omega_{E1} = 2 \, \pi \, f_{E1} = \omega_{1} \, \varepsilon_{E1}
D_{2} = \omega_{1} \, d_{2}; \, \Omega_{E2} = 2 \, \pi \, f_{E2} = \omega_{1} \, \varepsilon_{E2}
D_{3} = \omega_{1} \, d_{3};
D_{V} = \omega_{1} \, d_{V}; \, \Omega_{EV} = 2 \, \pi \, f_{EV} = \omega_{1} \, \varepsilon_{EV}$$
(17)

Bei der Bestimmung der Polynomkoeffizienten $f_7'^*$ bis $f_0'^*$, die in Tabelle III aufgeführt werden, ist es zweckmässig statt der relativen Steigungskoeffizienten der Belastungsdrehmomente $d_{\rm W}$ und $d_{\rm WA}$ die absoluten Grössen

$$D_{\rm WA} = \frac{d_{\rm WA}}{\omega_1} p \tag{18}$$

und

$$D_{W} = \frac{d_{W}}{\omega_{1}} p \tag{19}$$

einzuführen.

Die Koeffizienten $F_0'^*$, $F_{10}'^*$, $F_{11}'^*$, $F_{20}'^*$, $F_{21}'^*$, F_{30}' , F_{31}' , $F_{41}'^*$ und $F_{51}'^*$ sind [3; 9] zu entnehmen.

Wie nun Tabelle II zeigt, hängt der zeitliche Verlauf der transienten Grössen zwar auch von den Amplituden ab, doch ist ihre Bedeutung gegenüber der der Eigenwerte gering. Wird nämlich auch nur einer der Dämpfungskoeffizienten negativ, dann nehmen die transienten Grössen mit fortschreitender Zeit nicht ab, sondern wachsen an.

Das Betriebsverhalten der Drehstrom-Asynchronmaschine bzw. des elektromechanischen Verbandes ist dann dynamisch nicht stabil.

Sind dagegen die Dämpfungskoeffizienten grösser als Null, also positiv, dann verschwinden die transienten Grössen mit wachsender Zeit. Das Betriebsverhalten in der «näheren Umgebung» eines stationären Betriebszustandes ist dann dynamisch stabil. Da also eigentlich nur die Eigenwerte das transiente Betriebsverhalten entscheidend bestimmen, werden im folgenden nur noch diese untersucht.

Eingehende Untersuchungen zeigen, dass D_1 stets positiv ist. D_3 ist für Drehzahlen zwischen Leerlauf und Kippdrehzahl ebenfalls immer positiv. Liegt dagegen die mittlere Drehzahl $n_{\rm m0}$ zwischen Stillstand und Kippdrehzahl, dann wird D_3 negativ. Da aber für Dauerbetrieb eigentlich immer nur der Drehzahlbereich zwischen Leerlauf und der Kippdrehzahl in Betracht kommt, interessiert D_3 nicht so sehr. Beschränkt man sich auf den eben erwähnten Drehzahlbereich, dann sind nur die Dämpfungskoeffizienten $D_{\rm V}$ und D_2 entscheidend. Es zeigt sich nämlich, dass:

$$\begin{split} \vec{l}_{1St\Delta} &= \vec{l}_{St\Delta 1}^{2} e^{-D_{1}t} e^{i(\omega_{1} + \Omega_{ED})t} + \vec{l}_{St\Delta 1}^{2} e^{-D_{1}t} e^{i(\omega_{1} - \Omega_{EI})t} \\ &\quad \vec{l}_{St\Delta 2}^{2} e^{-D_{2}t} e^{i(\omega_{1} + \Omega_{EZ})t} + \vec{l}_{St\Delta 2}^{2} e^{-D_{2}t} e^{i(\omega_{1} - \Omega_{EZ})t} \\ &\quad \vec{l}_{St\Delta 3} e^{-D_{3}t} e^{j(\omega_{1} + \Omega_{EZ})t} + \vec{l}_{St\Delta 2}^{2} e^{-D_{2}t} e^{j(\omega_{1} - \Omega_{EZ})t} \\ &\quad \vec{l}_{St\Delta 3}^{2} e^{-D_{3}t} e^{j(\omega_{1} + \Omega_{EV})t} + \vec{l}_{St\Delta V}^{2} e^{-D_{V}t} e^{j(\omega_{1} - \Omega_{EV})t} \\ &\quad \vec{l}_{1L\Delta}^{2} e^{-D_{1}t} e^{j(\omega_{1} + \Omega_{EZ})t} + \vec{l}_{L\Delta 1}^{2} e^{-D_{1}t} e^{j(\omega_{1} - \Omega_{EI})t} \\ &\quad \vec{l}_{1L\Delta 3}^{2} e^{-D_{3}t} e^{j(\omega_{1} + \Omega_{EV})t} + \vec{l}_{L\Delta V}^{2} e^{-D_{2}t} e^{j(\omega_{1} - \Omega_{EV})t} \\ &\quad \vec{l}_{1L\Delta 3}^{2} e^{-D_{3}t} e^{j(\omega_{1} + \Omega_{EV})t} + \vec{l}_{L\Delta V}^{2} e^{-D_{2}t} e^{j(\omega_{1} - \Omega_{EV})t} \\ S_{\Delta} &= \hat{S}_{\Delta 1} e^{-D_{1}t} \sin(\Omega_{E1} t + \varphi_{S\Delta 1}) \\ &\quad \hat{S}_{\Delta 2} e^{-D_{2}t} \sin(\Omega_{E2} t + \varphi_{S\Delta 2}) \\ S_{\Delta 3} e^{-D_{3}t} \\ &\quad \hat{S}_{\Delta V} e^{-D_{V}t} \sin(\Omega_{EV} t + \varphi_{S\Delta V}) \\ S_{A\Delta} &= \hat{S}_{A\Delta 1} e^{-D_{1}t} \sin(\Omega_{E1} t + \varphi_{S\Delta A}) \\ &\quad \hat{S}_{A\Delta 2} e^{-D_{2}t} \sin(\Omega_{EV} t + \varphi_{S\Delta A}) \\ &\quad \hat{S}_{A\Delta 2} e^{-D_{2}t} \sin(\Omega_{EV} t + \varphi_{S\Delta A}) \\ &\quad \hat{V}_{1Sttot\Delta} &= \vec{\Psi}_{1\Delta 1}^{2} e^{-D_{1}t} e^{j(\omega_{1} + \Omega_{ED})t} + \vec{\Psi}_{1\Delta 1}^{2} e^{-D_{1}t} e^{j(\omega_{1} - \Omega_{EI})t} \\ &\quad \vec{\Psi}_{1\Delta 2}^{2} e^{-D_{2}t} e^{j(\omega_{1} + \Omega_{ED})t} + \vec{\Psi}_{1\Delta V}^{2} e^{-D_{2}t} e^{j(\omega_{1} - \Omega_{ED})t} \\ \vec{\Psi}_{1\Delta V}^{2} e^{-D_{2}t} e^{j(\omega_{1} + \Omega_{ED})t} + \vec{\Psi}_{1\Delta V}^{2} e^{-D_{2}t} e^{j(\omega_{1} - \Omega_{ED})t} \\ \vec{\Psi}_{1\Delta V}^{2} e^{-D_{2}t} e^{j(\omega_{1} + \Omega_{ED})t} + \vec{\Psi}_{1\Delta V}^{2} e^{-D_{2}t} e^{j(\omega_{1} - \Omega_{ED})t} \\ \vec{\Psi}_{2\Delta 2}^{2} e^{-D_{2}t} e^{j(\omega_{1} + \Omega_{ED})t} + \vec{\Psi}_{2\Delta 1}^{2} e^{-D_{2}t} e^{j(\omega_{1} - \Omega_{ED})t} \\ \vec{\Psi}_{2\Delta 3}^{2} e^{-D_{2}t} e^{j(\omega_{1} + \Omega_{ED})t} + \vec{\Psi}_{2\Delta 1}^{2} e^{-D_{2}t} e^{j(\omega_{1} - \Omega_{ED})t} \\ \vec{\Psi}_{2\Delta 3}^{2} e^{-D_{2}t} e^{j(\omega_{1} + \Omega_{ED})t} + \vec{\Psi}_{2\Delta 1}^{2} e^{-D_{2}t} e^{j(\omega_{1} - \Omega_{ED})t} \\ \vec{\Psi}_{2\Delta 3}^{2} e^{-D_{2}t} e^{j(\omega_{1} + \Omega_{ED})t} + \vec{\Psi}_{2\Delta 1}^{2} e^{-D_{2}t} e^{j(\omega_{1} - \Omega_{ED})t} \\ \vec{\Psi}_{2\Delta 1}^{2} e^{-D_{2}t} e^{j(\omega_{1} + \Omega_{ED$$

- 1. D_2 als Folge eines absolut oder relativ grossen Stator-Widerstandes negativer Werte fähig ist [3];
- 2. $D_{\rm V}$ dagegen bei «normalen» Kenngrössen der Asynchron-Maschine dann negativ werden kann, wenn die mechanische Kenngrössen $c_{\rm W}$, $\Theta_{\rm m}$, $\Theta_{\rm A}$ bestimmte Bedingungen erfüllen.

Damit sich nun die Einflüsse nicht gegenseitig überdecken, wird für die noch folgenden Betrachtungen der mechanische Verband als torsionsstarr angenommen. Bei starrem mechanischem Verband existieren die Eigenwerte $\Omega'_{6,7} = D_{\rm V} \pm {\rm j}\Omega_{\rm EV}$ nicht. Die transienten Ströme, Flüsse und Drehgeschwindigkeiten enthalten dann diese Glieder nicht mehr. Es ist dann natürlich auch $s_{\rm A}=s$. Der Vorteil dieser einschränkenden Annahme liegt darin, dass man als Einflussgrössen dann nur noch die Maschinenkenngrössen selbst, das gesamte Drehmassen-Trägheitsmoment des starren mechanischen Verbandes $\Theta_{\rm tot}=\Theta_{\rm A}+\Theta_{\rm m}=\Theta_{\rm m}\,(1+x_{\rm OA})$ und die totale Steigung des Belastungsdrehmoments $d_{\rm Wtot}=d_{\rm WA}+d_{\rm W}$ zu berücksichtigen hat. Bei starrem mechanischem Verband lassen sich die Eigenwerte $\Omega'_{1,2}=-D_1\pm {\rm j}\,\Omega_{\rm E1},\,\Omega'_{3,4}=-D_2$ $\pm {\rm j}\,\Omega_{\rm E2}$ und $\Omega_5=-D_3$ als Nullstellen des Polynoms

$$\begin{split} K_{\rm D1} &= \Theta_{\rm m} \left(\frac{D_{\rm WA}}{\Theta_{\rm A}} + \frac{D_{\rm W}}{\Theta_{\rm m}} \right) \\ K_{\rm D2} &= \frac{D_{\rm wA} D_{\rm w}}{\Theta_{\rm A}} \\ K_{\rm D3} &= \omega_{\rm R\, res}^2 \, \Theta_{\rm m} \frac{D_{\rm w} + D_{\rm wA}}{\Theta_{\rm m} + \Theta_{\rm A}} \qquad K_{\rm D4} = K_{\rm D2} + \Theta_{\rm m} \, \omega_{\rm R\, res}^2 \\ \omega_{\rm R\, res}^2 &= \varepsilon_{\rm R\, res}^2 \, \omega_1^2 = \frac{C_{\rm w}}{\Theta_{\rm res}} \qquad K_{\rm D5} = \frac{D_{\rm wA}}{\Theta_{\rm A}} \\ \omega_{\rm RA}^2 &= \varepsilon_{\rm RA}^2 \, \omega_1^2 = \frac{C_{\rm w}}{\Theta_{\rm A}} \\ f_{7'^*} &= \frac{f_{7'}}{\omega_1^2} = \Theta_{\rm m} \, F_{51}'^* \\ f_{6'^*} &= \frac{f_{\rm e}'}{\omega_1} = \Theta_{\rm m} \, F_{31}' + K_{\rm D1} \, F_{51}'^* \\ f_{4'^*} &= \omega_1 \, f_{4'} = \Theta_{\rm m} \, F_{21}'^* + F_{20}'^* + K_{\rm D1} \, F_{31}'^* + K_{\rm D4} \, F_{31}'^* + K_{\rm D3} \, F_{51}'^* + K_{\rm D5} \, F_{30}' \\ f_{3'^*} &= \omega_1^2 f_{3}' = \Theta_{\rm m} \, F_{11}'^* + F_{10}'^* + K_{\rm D1} \, F_{21}'^* + K_{\rm D4} \, F_{31}'^* + K_{\rm D3} \, F_{41}'^* + K_{\rm D5} \, F_{20}'^* + \omega_{\rm RA}^2 \, F_{30}' \\ f_{1'^*} &= \omega_1^3 f_{2}' &= +F_{0'}'^* + K_{\rm D1} \, F_{11}'^* + K_{\rm D4} \, F_{21}'^* + K_{\rm D3} \, F_{31}'^* + K_{\rm D5} \, F_{10}'^* + \omega_{\rm RA}^2 \, F_{20}' \\ f_{1'^*} &= \omega_1^5 f_{0}' &= K_{\rm D3} \, F_{11}'^* + K_{\rm D5} \, F_{0'}'^* + \omega_{\rm RA}^2 \, F_{10}'^* \end{split}$$

$$0 = F_5^* \Omega'^5 + F_4^* \Omega'^4 + F_3^* \Omega'^3 + F_2^* \Omega'^2 + F_1^* \Omega' + F_0^*$$
(20)

bestimmen. Die Koeffizienten sind in Tabelle IV aufgeführt. Unter $D_{\mathrm{W}\,\mathrm{tot}}$ ist dabei der Ausdruck $D_{\mathrm{W}\,\mathrm{tot}} = \frac{d_{\mathrm{W}\,\mathrm{tot}}}{\omega_1}\,p$ zu verstehen. Wie bereits gesagt, wird im folgenden untersucht in welcher Weise die Eigenwerte $\Omega_{\mathrm{E}\,\mathrm{I}},\,\Omega_{\mathrm{E}\,\mathrm{2}},\,D_{\mathrm{I}},\,D_{\mathrm{2}}$ und D_{3} von den Maschinenkenngrössen, von der totalen Steigung des Belastungsdrehmomentes $d_{\mathrm{W}\,\mathrm{tot}}$ bzw. $D_{\mathrm{W}\,\mathrm{tot}}$ und von der Grösse des totalen Drehmassenträgheitsmoments Θ_{tot} bei variabler Primärfrequenz beeinflusst werden.

4. Die Eigenwerte der Statorspannungs-Statorfrequenzgesteuerten Asynchronmaschine abhängig von der Primärfrequenz

Am Beispiel von insgesamt vier Asynchronmaschinen soll im folgenden Abschnitt der charakteristische Verlauf der Eigenfrequenzen $f_{\rm E1}$ und $f_{\rm E2}$ und der Dämpfungskoeffizienten D_1 , D_2 und D_3 abhängig von der Primärfrequenz f_1 verfolgt werden. Dabei wird die Statorspannung nach einer linearen Statorspannung-Statorfrequenz-Kennlinie der Primärfrequenz zugeordnet, so dass $U_1/f_1 = U_{1N}/f_{1N} = {\rm const.}$ ist. Die Kenngrössen der untersuchten Motoren sind in Tabelle V zusammengestellt. Um vergleichen zu können, wird hier und im folgenden angenommen, dass die Wicklungstemperaturen $40~{}^{0}{\rm C}$ betragen. Die Fig. 2a...2d zeigen die graphische Darstellung der Eigenwerte abhängig von der Primärfrequenz im Frequenzbereich $0 \le f_1 \le f_{1N}$.

Den Berechnungen wurde als Drehmassenträgheitsmoment $\Theta_{\rm tot}$ das des Motors ($\Theta_{\rm tot}=\Theta_{\rm m}$) zugrunde gelegt.

Die Steigung des Belastungsmoments mit der Drehzahl $d_{\rm Wtot}$ wurde gleich Null gesetzt. Um den Einfluss der Belastung zu erkennen, sind in den Fig. 2a...2d den für Leerlauf geltenden Kurvenzügen diejenigen die für Belastung mit dem Nenndrehmoment gelten, gegenüber gestellt.

Die tiefe Eigenfrequenz $f_{\rm E2}$ ist bei grosser Primärfrequenz von dieser selbst fast unabhängig. Mit geringer werdender Primärfrequenz nähert sich dann die Eigenfrequenz $f_{\rm E2}$ dieser selbst. Der Einfluss des Belastungsdrehmoments ist gering und macht sich, wenn überhaupt, nur bei niedrigen Primärfrequenzen bemerkbar. Die hohe Eigenfrequenz $f_{\rm E1}$ unterscheidet sich, wie nach [9] nicht anders zu erwarten, für hohe Primärfrequenzen nur ganz unwesentlich von dieser selbst. Mit sinkender Primärfrequenz strebt dann aber $f_{\rm E1}$ einem Grenzwert zu und liegt ganz erheblich über $f_{\rm 1}$. Auch hier ist der Belastungseinfluss unbedeutend. Dieser charakteristische Verlauf der Eigenfrequenz $f_{\rm E1}$ war eigentlich zu erwarten. Bei niedrigen Primärfrequenzen wächst ja der Statorwiderstand

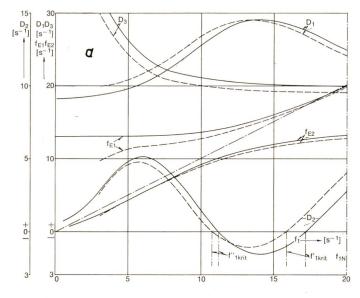
Polinomkoeffizienten bei starrem mechanischem Verband

Tabelle IV

$$egin{align*} F_0^* &= \omega_{1}^3 \, F_0 = F_0'^* + D_{ ext{W tot}} \, F_{11}'^* \ F_1^* &= \omega_{1}^2 \, F_1 = F_{10}'^* + D_{ ext{W tot}} \, F_{21}'^* + \Theta_{ ext{tot}} \, F_{11}'^* \ F_2^* &= \omega_{1} \, F_2 = F_{20}'^* + D_{ ext{W tot}} \, F_{31}' + \Theta_{ ext{tot}} \, F_{21}'^* \ F_3^* &= F_3 &= F_{30}' + D_{ ext{W tot}} \, F_{41}'^* + \Theta_{ ext{tot}} \, F_{31}' \ F_4^* &= rac{F_4}{\omega_{1}} &= D_{ ext{W tot}} \, F_{51}'^* &+ \Theta_{ ext{tot}} \, F_{41}'^* \ F_5^* &= rac{F_5}{\omega_{1}^2} &= \Theta_{ ext{tot}} \, F_{51}'^* \ \hline \end{pmatrix}$$

	Symbol	Einheit	Maschine			
Kenngrösse			Nr. 8	Nr. 14	Nr. 15	Nr. 16
Nennleistung bei Nennerwärmung	$P_{ m WN}$	kW	920	315	97	45
Nenndrehmoment	$M_{ m daN}$	Ws	5898	5192	397	72,594
Polpaarzahl	P	_	2	2	2	1
Nennprimärfrequenz	f_{1N}	Hz	50	20	78	100
Nennspannung	$U_{ m N}$	V	6000	625	1150	365
Schaltung			Δ	Y	Y	Y
totale Streuzahl	σ	_	0,062850	0,05241	0,1139	0,053777
Motorträgheitsmoment	$\Theta_{ m m}$	kgm ²	25	8	2,5	0,194
Drehmoment bei Nennprimärfrequenz, Nennleistung und 40 °C	$M_{ m da}$	Ws	5894	5172	397	72,594
relativer Statorwiderstand (40 °C)	αθ	_	$3,092 \cdot 10^{-3}$	$7,511 \cdot 10^{-3}$	$7,858 \cdot 10^{-3}$	$4,067 \cdot 10^{-3}$
relativer Rotorwiderstand (40 °C)	eta_0	_	$2,025 \cdot 10^{-3}$	$8,094 \cdot 10^{-3}$	$5,774 \cdot 10^{-3}$	$5,587 \cdot 10^{-3}$

relativ gegenüber den Reaktanzen an. Nach [9] zeigt sich nämlich die gleiche Erscheinung wenn R₁ absolut gegenüber den Reaktanzen zunimmt. Charakteristisch ist, dass D1 abhängig von der Primärfrequenz im Bereich $0 \le f_1 \le f_{1N}$ ein Maximum durchläuft. Auch bei D₁ ist der Belastungseinfluss von einer Ausnahme abgesehen (Maschine Nr. 16) gering-



Die Eigenfrequenz $f_{\rm E1}$ und $f_{\rm E2}$ und die Dämpfungskoeffizienten $D_1,\ D_2,\!D_3$ bei $U_1/\!f_1$ const. und $\Theta_{\rm tot}\!=\!\Theta_{\rm m}$ (starrer mechanischer Verband)

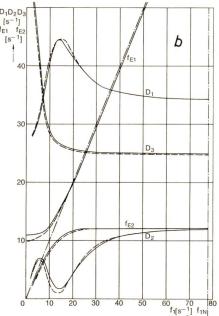
abhängig von der Primärfrequenz f_1 für Leerlauf (-(_ - - -) der Maschinen: a Nr. 14; und Nennmoment (

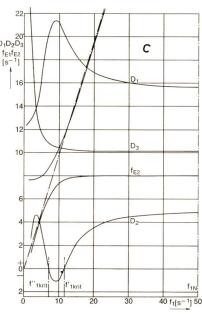
b Nr. 15;

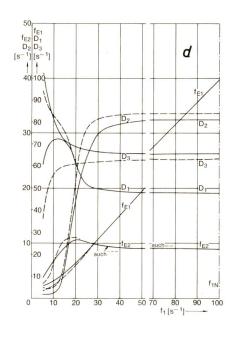
c Nr. 8;

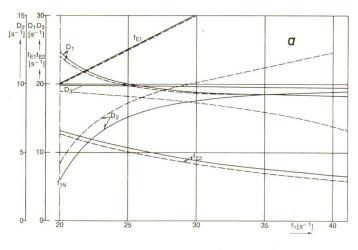
d Nr. 16

fügig. Typisch für den Dämpfungskoeffizienten D3 ist, dass er im Bereich kleiner Primärfrequenzen rasch grösser wird, während er für Primärfrequenzen in der Grössenordnung der Nennprimärfrequenz konstant verläuft. Allerdings kann sich bei Belastung im Bereich kleiner Primärfrequenzen auch eine genau entgegengesetzte Abhängigkeit des Dämpfungskoeffizienten D₃ von der Primärfrequenz ergeben (Fig. 2d).









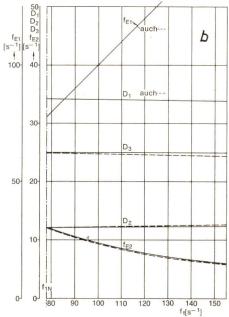


Fig. 3 Die Eigenfrequenzen $f_{\rm E1}$ und $f_{\rm E2}$ und die Dämpfungskoeffizienten D_1 , D_2 , D_3 bei $U_1=U_{\rm 1N}={\rm const.}$ (Feldschwächebereich) und $\theta_{\rm tot}=\theta_{\rm m}$ (starrer Verband)

Insgesamt genommen ist aber der Verlauf von D_1 und D_3 abhängig von f_1 viel weniger bedeutsam als der des Dämpfungskoeffizienten D_2 . Während D_1 und D_3 stets grösser als Null sind, kann D_2 auch negativ werden. Mit sinkender Primärfrequenz nimmt D_2 ab, durchläuft ein Minimum um danach wieder anzusteigen und nach Durchlaufen eines Maximums wieder abzusinken. Dabei kann es abhängig von der Kenngrösse der Maschine und des mechanischen Verbandes geschehen, dass D_2 zwischen den «kritischen» Frequenzen f'_{1krit} und f''_{1krit} im Negativen verläuft.

Die Asynchronmaschine ist dann im Bereich $f_{1'krit}'' \leq f_1 \leq f_{1krit}$ dynamisch nicht stabil. Das war eigentlich auch zu erwarten. Der Dämpfungskoeffizient d_2 kann mit absolut wachsendem Statorwiderstand negativ werden, um dann bei noch weiter zunehmendem Statorwiderstand wieder positiv zu werden. Da hier bei sinkender Primärfrequenz der Statorwiderstand relativ gegenüber den Reaktanzen der Maschine anwächst, ist der in den Fig. 2a...2d gezeigte Verlauf von D_2 gar nicht weiter überraschend.

Nur der Vollständigkeit halber soll noch der Frequenzbereich $f_{1\mathrm{N}} \leq f_1 \leq \infty$ untersucht werden. Die Fig. 3a und 3b veranschaulichen den Verlauf der Eigenwerte abhängig von der Primärfrequenz, wobei jetzt aber $U_1 = U_{1\mathrm{N}} = \mathrm{const.}$ gehalten wurde. Dynamische Instabilitäten sind in diesem Frequenzbereich nicht zu erwarten. Mit Rücksicht auf den Umfang dieser Arbeit sei auf eine eingehendere Diskussion verzichtet.

Erwähnt sei noch, dass die in [2] benutzte Methode zur Bestimmung des Bereichs dynamischer Instabilität zu genau den gleichen Ergebnissen führt. Nach [10; 9] sind ja angefachte Eigenschwingungen dann zu erwarten, wenn die Resonanzfrequenz $f_R = \varepsilon_R \omega_1$ zwischen den Grenzen f_{D1} und f_{D2} liegt. Diese Frequenzen $f_{D1} = \varepsilon_1 f_1$ und $f_{D2} = \varepsilon_2 f_1$ begrenzen den Frequenzbereich, indem der Dämpfungskoeffizient D_{ε} , den die Asynchronmaschine gegenüber stationären erzwungenen Drehschwingungen entwickelt, negative Werte annimmt. Die Fig. 4a und 4b zeigen den Verlauf der Resonanzfrequenz und der Bereichsgrenzen f_{D1} und f_{D2} abhängig von f_1 .

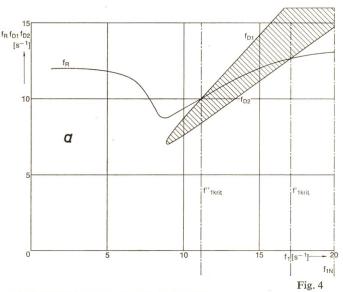
5. Die Eigenwerte der Asynchronmaschine bei konstantem magnetischem Statorfluss abhängig von der Primärfrequenz

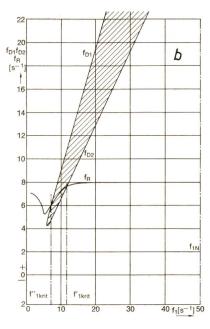
Wenn man nun die Statorspannung so steuert, dass bei veränderlicher Primärfrequenz der Effektivwert des totalen stationären magnetischen Statorflusses Ψ_1 konstant bleibt, dann ist das ohne grossen Einfluss auf die dynamische Stabilität. Dies beweist sehr anschaulich ein Vergleich der Fig. 2a und 5. In Fig. 5 sind die Eigenwerte der Maschine Nr. 14 bei konstantem Statornennfluss abhängig von der Primärfrequenz aufgetragen. Als Statornennfluss wird dabei derjenige mit der Statorwicklung verkettete magnetische Fluss bezeichnet, der sich bei Leerlauf, Nennprimärfrequenz und Nennspannung einstellt. Der Berechnung liegt $\Theta_{\rm tot} = \Theta_{\rm m}$ zugrunde.

6. Der Einfluss des starren mechanischen Verbandes auf die Eigenwerte bei variabler Primärfrequenz

Ist der mechanische Verband torsionsstarr (starre Welle), dann äussert sich sein Einfluss auf die Eigenwerte dadurch, dass die Steigerung der Belastungsdrehmomente mit der Drehzahl $d_{\rm W\,tot}=d_{\rm W}+d_{\rm WA}$ die Eigenwerte verändert und zum anderen dadurch, dass die an die Asynchronmaschine angekuppelten Drehmassen das totale Drehmassen-Trägheitsmoment $O_{\rm tot}$ mit bestimmen.

Wie Fig. 6 zeigt, ist der Einfluss der Steigung des Belastungsdrehmoments mit der Drehgeschwindigkeit auf die Eigenfrequenzen $f_{\rm E1}$ und $f_{\rm E2}$ gering. Die totale Steigung des Belastungsdrehmoments $d_{\rm W\,tot}$, die ja einer drehgeschwindigkeitsproportionalen mechanischen Dämpfung entspricht, wird in Vielfachen des Drehmomentsfaktors $F_{\rm MN}$ ($F_{\rm MN}=F_{\rm M}$ bei Nenndrehmoment, Nennprimärfrequenz und Nennspannung) ausgedrückt. Die Statorspannung der Maschine wird nach einer linearen Statorspannungs-Statorfrequenzlinie gesteuert. Entscheidend wirkt $d_{\rm W\,tot}$ auf die Dämpfungskoeffizienten D_1 und D_2 ein. Eine genügend grosse Steigung der Belastungsdrehmoment-Drehzahlkurve bewirkt dynamisch stabiles Betriebsverhalten. Die in Fig. 6 gezeigten Kurvenzüge gelten jeweils für $d_{\rm W\,tot}=$ const. Will man dagegen von einer für jede Drehzahl konstanten Steigung des Belastungsdreh-

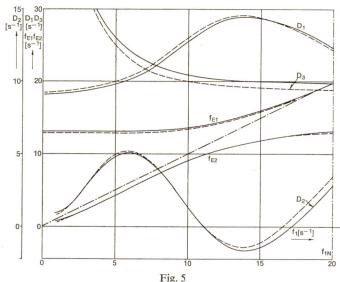




Die Resonanzfrequenzen f_{R} sind die Intervallgrenzen $f_{\mathrm{D1}} = \varepsilon_1 f_1$ bzw. $f_{\mathrm{D2}} = \varepsilon_2 f_1$ bei $U_1/f_1 = \mathrm{const.}$ und $\theta_{\mathrm{tot}} = \theta_{\mathrm{m}}$ (starrer Verband) abhängig von der Primärfrequenz f_1 für Leerlauf der Maschinen: a Nr. 14; b Nr. 8

moments ausgehen, dann müsste man $d_{\text{W tot N}} \frac{f_1}{f_{1\text{N}}} = \text{const.}$ halten $(d_{\text{W tot N}} = d_{\text{W tot}})$ bei $f_1 = f_{1\text{N}}$. Ein Unterschied zu den in Fig. 6 gezeigten Kurvenzügen ist natürlich vorhanden aber nicht so sehr wesentlich.

Fig. 7 veranschaulicht den Einfluss des totalen Drehmassenträgheitsmoments auf die Eigenwerte. Wie zu erwarten war, nimmt $f_{\rm E\,2}$ mit grösser werdendem Trägheitsmoment ab, während D_2 erheblich zunimmt. Das gilt so lange wie die Primärfrequenz in der Grössenordnung ihres Nennwertes liegt. Bei kleinen Primärfrequenzen verringert sich der Einfluss von $\Theta_{\rm tot}$ auf $f_{\rm E\,2}$ zunehmend, während D_2 sogar mit wachsendem Trägheitsmoment geringer wird.



Die Eigenfrequenzen $f_{\rm E1}$ und $f_{\rm E2}$ und die Dämpfungskoeffizienten D_1 , D_2 und D_3 der Maschine Nr. 14 bei $\theta_{\rm tot}=\theta_{\rm m}$ (starrer mechanischer Verband) und variierter Primärfrequenz

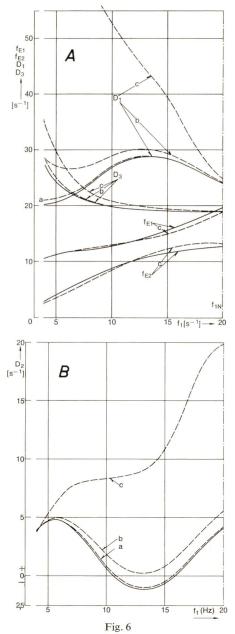
Der totale Statornennfluss (totaler mit der Statorwicklung verkettete magnetischer Fluss) wird dabei konstant gehalten. (Nennfluss = Leerlauffluss)

Entscheidend aber ist, dass durch geeignete Wahl des Drehmassenträgheitsmoments der Bereich negativer Dämpfung beseitigt werden kann. Auch ein wachsendes Trägheitsmoment verbessert also die dynamische Stabilität! Allerdings sei ausdrücklich erwähnt, dass dies nur dann der Fall ist, wenn die Welle als starr angesehen werden darf. Der Einfluss des Drehmassenträgheitsmomentes auf die restlichen Eigenwerte ist weniger bedeutsam.

7. Der Einfluss der wichtigsten Maschinenkenngrössen auf die Eigenwerte bei starrem mechanischem Verband abhängig von der Primärfrequenz

Bei den folgenden Untersuchungen des Einflusses einzelner Maschinen-Kenngrössen auf die Eigenwerte wird das Drehmassenträgheitsmoment des mechanischen Verbandes $\Theta_{\rm tot}$ gleich dem des Motors gesetzt. Ferner wird angenommen, dass die Statorspannung nach einer linearen Stator-Spannungs-Statorfrequenz-Kennlinie gesteuert wird. Da hier nur ein Drehzahlbereich zwischen den jeweiligen Leerlauf- und Kippdrehzahlen interessiert und da in diesem Drehzahlintervall der Einfluss des mittleren Belastungsdrehmomentes, wie die vorangegangen Untersuchungen gezeigt haben, relativ gering ist, wird den folgenden Betrachtungen der Fall der leerlaufenden Asynchronmaschine zugrunde gelegt.

Fig. 8 veranschaulicht, in welcher Weise sich die Eigenwerte verändern, wenn man den Strangwiderstand der Maschinen Nr. 16 einmal um 25 % verringert und zum andern um 50 % erhöht. Danach ist der Einfluss des Statorwiderstandes auf die Eigenfrequenzen nur im Bereich sehr niedriger Primärfrequenzen und auch dort nur in geringem Masse spürbar. Im Gegensatz zu den Eigenfrequenzen werden die Dämpfungskoeffizienten erheblich beeinflusst. Während der Verlauf der Kurvenzüge D_1 und D_2 abhängig von der Primärfrequenz bei unterschiedlichem Primärwiderstand grundsätzlich erhalten bleibt, ändert sich dieser bei D_3 . Dass D_1 mit wachsendem Primärwiderstand steigt, D_2 dagegen kleiner wird, war zu erwarten.

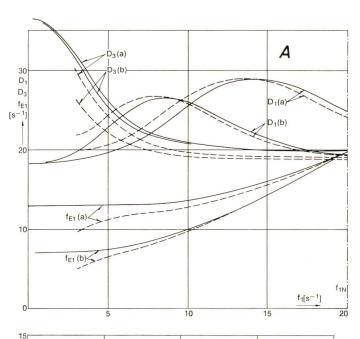


Die Dämpfungskoeffizienten D_1 , D_2 , D_3 und die Eigenfrequenzen $f_{\rm E1}$, $f_{\rm E2}$ der mit dem Nennmoment belasteten Maschine Nr. 14 bei $\theta_{\rm tot}=\theta_{\rm m}$ (starrer Verband) und variierter Primärfrequenz f_1

Die Maschine wird Statorspannung-Statorfrequenz-gesteuert nach $U_1/f_1={\rm const.}$ betrieben. Die Steigung des Belastungsmomentes mit der Drehzahl ist unterschiedlich:

Fig. 9 zeigt den Einfluss unterschiedlicher Läuferwiderstände auf den Verlauf der Eigenwerte abhängig von der Primärfrequenz. Die Eigenfrequenz $f_{\rm E1}$ ändert sich bei unterschiedlichem Läuferwiderstand nicht wesentlich. Die tiefe Eigenfrequenz $f_{\rm E2}$ nimmt mit wachsendem Läuferwiderstand ab, nähert sich dagegen mit abnehmendem Läuferwiderstand einem Grenzwert, der im wesentlichen durch die Streuung bestimmt wird. Diese Abhängigkeit ist ohne weiteres einleuchtend, wenn man sich vergegenwärtigt, in welcher Weise sich die Pendelresonanzfrequenz $f_{\rm R}$ durch den Läuferwiderstand beeinflusst wird. Es sind nämlich die Pendelresonanzfrequenz $f_{\rm R}$ und die tiefe Eigenfrequenz $f_{\rm E2}$ bei Nenn-

primärfrequenz nahezu gleich gross. Nach [10] ändert sich ja der Federkennwert c_{ε} abhängig von der relativen Pendelfrequenz ε um so rascher dem ideellen Federkennwert c_{∞} je kleiner der Läuferwiderstand ist. Da aber die dynamische Parabel von den elektrischen Kenngrössen der Maschine nicht beeinflusst wird, nähert sich die Pendelresonanzfrequenz mit kleiner werdendem Läuferwiderstand immer mehr der ideellen Pendelresonanzfrequenz. Ausser im Bereich geringer Primärfrequenzen nimmt D_3 mit wachsendem Läuferwiderstand zu. Auch das ist verständlich, denn die mittlere stationäre Drehzahl stellt sich um so schneller ein je grösser der Läuferwiderstand ist. Wie zu erwarten war, wird D1 durch den Läuferwiderstand nicht beinflusst. Allerdings gilt das nur wenn die Primärfreqeunz nicht wesentlich kleiner als etwa halbe Nennprimärfrequenz ist. Sowohl D_1 als auch D_3 ändert sich im Bereich tiefer Primärfrequenzen bei unterschiedlichem Läuferwiderstand in einer Weise, die man nicht unbedingt erwarten konnte.



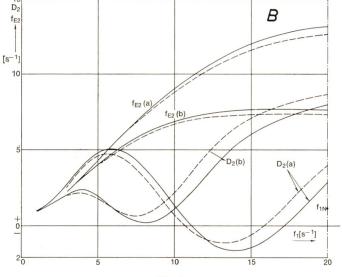
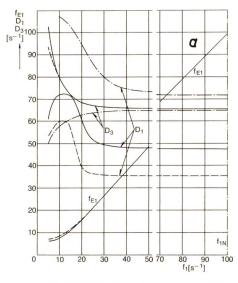


Fig. 7 Die Eigenfrequenzen $f_{\rm E1}$, $f_{\rm E2}$ und die Dämpfungskoeffizienten D_1 , D_2 , D_3 der Maschine Nr. 14 bei $U_1/f_1=$ const. und a) $\theta_{\rm tot}=\theta_{\rm m}$; b) $\theta_{\rm tot}=3$ $\theta_{\rm m}$ (starrer mechanischer Verband) abhängig von der Primärfrequenz f_1 Leerlauf (———), Nennmoment (————) [Fig. 7a stimmt mit Fig. 2a überein.]

[Fig. 7A zeigt D_1 , D_3 und $f_{\rm E1}$. Fig. 7B stellt D_2 und $f_{\rm E2}$ dar]



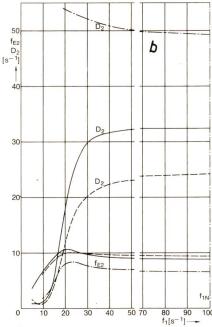


Fig. 8 Die Eigenfrequenz $f_{\rm E1}$ und $f_{\rm E2}$ und die Dämpfungskoeffizienten D_1 , D_2 , D_3 bei $U_1/f_1=$ const. der leerlaufenden Maschine Nr. 16 abhängig von der Primärfrequenz f_1 bei unterschiedlichem Statorwiderstand ($\alpha=0.004067$) Der mechanische Verband ist torsionsstarr und $\theta_{\rm \ tot}=\theta_{\rm \ m}$ α_0 ; $----0.75\alpha_0$; $-\cdot--1.5\alpha_0$ [Fig. 8a zeigt D_1 , D_3 und $f_{\rm E1}$; Fig. 8b stellt D_2 und $f_{\rm E2}$ dar]

Auf die Untersuchung des Einflusses weiterer Maschinenkenngrössen auf die Eigenwerte muss hier mit Rücksicht auf den Umfang der Arbeit verzichtet werden.

8. Stabilitätskriterien bei starrem mechanischem Verband

Wie in Abschnitt 3 ausführlich dargelegt worden ist, ist das Betriebsverhalten der Drehstromasynchronmaschine innerhalb des elektromechanischen Verbandes dann dynamisch stabil, wenn die Realteile der Eigenwerte kleiner als Null sind. Demnach müssten, wenn dynamische Stabilität gewährleistet werden soll, im Falle eines starren mechanischen Verbandes die drei Dämpfungskoeffizienten D_1 , D_2 und D_3 grösser als Null sein.

Die Eigenwerte lassen sich nicht direkt aus den Maschinenkenngrössen dem gesamten Trägheitsmoment $\Theta_{\rm tot}$ und der Steigung des Belastungsdrehmoments mit der Drehgeschwindigkeit bestimmen, sondern ergeben sich als Nullstellen des Polynoms in Gl. (20). Nun stellt die Bestimmung der Nullstellen eines Polynoms fünften Grades heute kein Problem dar, weil Grossrechenanlagen solche Aufgaben in Bruchteilen einer Sekunde bewältigen. Trotzdem ist es für gewisse Zwecke doch wünschenswert, Stabilitätskriterien zu besitzen, die den «Umweg» über die Nullstellenbestimmung überflüssig machen. Solche Stabilitätskriterien existieren z.B. in Form der sog. Hurwitzschen Koeffizienten-Determinanten. Diese lauten im Falle der Gl. (20) wie folgt:

$$\Delta_0^* = F_5^* \tag{21}$$

$$\Delta_1^* = F_4^* \tag{22}$$

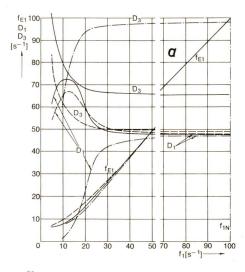
$$\Delta_2^* = F_4^* F_3^* - F_2^* F_5^* \tag{23}$$

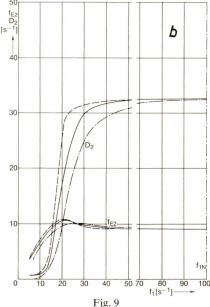
$$\Delta_3^* = F_2^* \Delta_2^* + F_4^* (F_0^* F_5^* - F_1^* F_4^*)$$
 (24)

$$\Delta_4^* = \Delta_2^* (F_2^* F_1^* - F_0^* F_3^*) - (F_4^* F_1^* - F_0^* F_5^*)^2$$
 (25)

$$\Delta_5^* = F_0^* \, \Delta_4^* \tag{26}$$

Die Nullstellen der Gl. (20), die Eigenwerte, würden nach *Hurwitz* immer dann negative Realteile (positive Dämpfungskoeffizienten) besitzen wenn die Bedingung





Die Eigenfrequenzen $f_{\rm E1}$ und $f_{\rm E2}$ und die Dämpfungskoeffizienten D_1,D_2,D_3 bei $U_1/f_1=$ const. der leerlaufenden Maschinen Nr. 16 abhängig von der Primärfrequenz f_1 bei unterschiedlichem Rotorwiderstand ($\beta_0=0,005587$) Der mechanische Verband ist torsionsstarr und $\theta_{
m tot}=\theta_{
m m}$:

 β_0 ; $----0.75\beta_0$; $----1.5\beta_0$ [Fig. 9a zeigt D_1 , D_3 und f_{E1} ; Fig. 9b stellt D_2 und f_{E2} dar]

$$\Delta_0^* > 0$$
 $\Delta_1^* > 0$
 $\Delta_2^* > 0$
 $\Delta_3^* > 0$
 $\Delta_4^* > 0$
 $\Delta_5^* > 0$
(27)

erfüllt ist. Beschränkt man sich auf einen Drehzahlbereich zwischen der synchronen und der Kippdrehzahl, dann wird D_2 bzw. d_2 immer dann negativ wenn Δ_4 * bzw. Δ_4 negative Werte annimmt. Zwar ist zudem auch ⊿5 bzw. ⊿5* kleiner als Null doch das ist nach Gl. (26) auch selbstverständlich, da F_0^* in dem genannten Drehzahlbereich stets grösser als Null ist. Damit steht dann aber ein sehr einfaches Stabilitätskriterium zur Verfügung, denn 44 lässt sich ja aus den Maschinenkenngrössen, dem gesamten Trägheitsmoment und der Steigung des Belastungsdrehmoments mit der Drehzahl

$$\Delta_{4}^{*} = \Delta_{40} \Theta_{\text{tot}} + D_{\text{W tot}} \Delta_{41} + D_{\text{W tot}}^{2} \Delta_{42} +
+ D_{\text{W tot}}^{3} \Delta_{43} + D_{\text{W tot}}^{4} \Delta_{44}$$
(28)

Die Grössen Δ_{40} , Δ_{41} , Δ_{42} , Δ_{43} und Δ_{44} enthalten ausser dem gesamten Drehmassenträgheitsmoment Θ_{tot} und der mittleren Drehgeschwindigkeit ω_{m0} nur die elektrischen Kenngrössen der Asynchronmaschine.

8. Schlussbetrachtungen

In der vorliegenden Arbeit werden die Eigenwerte, die das Betriebsverhalten von Drehstromasynchrontransiente maschinen und des an sie angeschlossenen mechanischen

Verbandes bei variabler Primärfrequenz bestimmen, untersucht. Es zeigt sich, dass der Dämpfungskoeffizient D₂ für Primärfrequenzen bestimmter Grösse negative Werte annehmen kann, so dass das Betriebsverhalten für diese Primärfrequenzen instabil wird. Eine Untersuchung des Einflusses der elektrischen Maschinenkenngrössen und der Eigenschaften des elektromechanischen Verbandes ergibt, dass die dynamische Stabilität einer Asynchronmaschine dadurch verbessert werden kann, dass man das Drehmassenträgheitsmoment genügend gross, die Steigung des Belastungsdrehmomentes mit der mittleren Drehgeschwindigkeit genügend steil, den Primärwiderstand genügend gering macht, und die Streuung relativ gross wählt.

Literatur

- [1] M. Brüderlink, H. W. Lorenzen und H. Stemmler: Umrichterspeisung von Asynchronmaschinen. ETZ-A 91(1970)1, S. 22...28.
- [2] H. W. Lorenzen: Angefachte Eigenschwingungen von Drehstrom-Asynchronmaschinen. Brown Boveri Mitt. 55(1968)10/11, S. 650...658.
- [3] H. W. Lorenzen: Das dynamische Betriebsverhalten von Asynchronma-schinen bei kleinen Abweichungen vom stationären Zustand. Brown Boveri Mitt. 56(1969)11/12, S. 548...569.
- [4] G. Pfaff: Zur Dynamik des Asynchronmotors bei Drehzahlsteuerung mittels veränderlicher Speisefrequenz. ETZ-A 85(1964)22, S. 719...724.

- In Stepina: Betriebsverhalten der vom Wechselrichter gespeisten Asynchronmaschinen. E und M 83(1966)5, S. 295...303.
 R. H. Nelson, T. A. Lipo and P. C. Krause: Stability analysis of a symmetrical induction machine. Trans. IEEE PAS 88(1969)11, p. 1710...1717.
 D. Naunin: Die Darstellung des dynamischen Verhaltens der stromgespeisten Asynchronmaschine durch ein komplexes VZ1-Glied. Wiss. Ber. AEG-Telefunken 42(1969)1, S. 48...52.
 H. W. Lorangar, Tur. Theorie, der transienten. Petriebzugerheltens, von
- H. W. Lorenzen: Zur Theorie des transienten Betriebsverhaltens von Drehstromkäfigankermotoren. Arch. Elektrotechn. 53(1969)1, S. 13...30.
- [9] H. W. Lorenzen: Die erzwungenen Schwingungen von Asynchronmoto-ren unter Berücksichtigung des Ständerwiderstandes. ETZ-A 88(1967)8, S. 195...202.
- A. W. Kron und H. W. Lorenzen: Die selbsterregten Pendelungen von Drehstrom-Asynchronmaschinen. ETZ-A 90(1969)9, S. 200...205.

Adresse des Autors:

Dr. Hans Werner Lorenzen, AG Brown, Boveri & Cie., 5400 Baden.

Literatur — Bibliographie

625:656.2 (058.2) SEV-Nr. S 5/1970-71

Jane's World Railways 1970-71. Edited by Henry Sampson. 13th edition. London, Sampson Low, Marston & Co. Ltd., 1970; 40, 71/686 p., fig., tab., mps. - Price: £ 12. 10. 0

Die vorliegende 13. Ausgabe dieses umfangreichen Nachschlagewerkes über die Eisenbahnen und die sie beliefernden Industrieunternehmungen der ganzen Welt ist inhaltlich gegenüber der 12. Ausgabe überarbeitet worden. Während die Gliederung des Stoffes gleich geblieben ist, sind beim Text durch Verkleinerung und Verminderung der Abbildungen Kürzungen vorgenommen worden, so dass der neueste Band, trotz Aufnahme einiger zusätzlicher Informationen, nicht umfangreicher und deshalb unhandlicher geworden

Sein Vorwort stellt der Herausgeber unter die Überschrift: «Die Eisenbahn- und Wachstumsindustrie » und zeigt in einer interessanten Analyse die Richtigkeit dieser Feststellung.

Nicht nur die ständige Zunahme der Weltbevölkerung, sondern auch die fortschreitende Erhöhung des allgemeinen Lebensstandards verlangen mehr, raschere und wirtschaftlichere Transportleistungen. Über die nächsten 10 Jahre darf wohl mindestens mit einem Zuwachs des Verkehrsvolumens von 50 % gerechnet werden. Nach wie vor werden der grösste Teil der Transporterfordernisse durch konventionelle Eisenbahnen wirtschaftlich optimal befriedigt werden können, wobei die ideale Voraussetzung der schienengeführten Traktion für die Anwendung der Kybernetik eines der wichtigsten Argumente darstellt.

Ganz besonders bedeutungsvoll wird sich der Nahverkehr weiterentwickeln. Konnten in Jane's World Railways, Ausgabe 1954/55, erst 10 Untergrundbahnen beschrieben werden, so werden im vorliegenden Band bereits Informationen über 60 im Betrieb oder im Bau stehende Nahverkehrssysteme sowie 20 weitere, welche sich im fortgeschrittenen Planungsstadium befinden, gegeben.

Mit einem Überblick über die voraussichtliche technische Entwicklung der Eisenbahnen in den nächsten 10 Jahren schliesst das Vorwort.

Der statistische Teil dieses Nachschlagewerkes orientiert in seinem 1. Teil auf 177 Seiten über ca. 400 Hersteller von Rollmaterial, Container, Steuerungs- und Signalanlagen, Maschinen für Geleisebau und -Unterhalt sowie von Dieselmotoren für Traktionszwecke. Im 2. Teil (450 Seiten) werden die grösseren Eisenbahngesellschaften der ganzen Welt aufgeführt und deren wichtigste Daten publiziert.

Als Einleitung zum 3. Abschnitt, in welchem 60 Nahverkehrssysteme von 30 Ländern beschrieben sind, hat H. H. Howson eine kurze Übersicht über den Entwicklungsstand nichtkonventioneller Land-Verkehrsmittel verfasst, worin das Hauptgewicht auf Einschienenbahnen und Hovertrain gelegt ist.

Nach wie vor bietet Jane's World Railways jedem, der sich mit Eisenbahnen befasst eine umfassende und wertvolle Informationsmöglichkeit. E. Dünner