Experimentelle Ermittlung der Ersatzschemata und der Parameter einer idealisierten Synchronmaschine : Nachbildung in Rechenprogrammen

Autor(en): Canay, M.

Objekttyp: Article

Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins : gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV) und des Verbandes Schweizerischer Elektrizitätswerke (VSE)

Band (Jahr): 63 (1972)

Heft 20

PDF erstellt am: 13.09.2024

Persistenter Link: https://doi.org/10.5169/seals-915742

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

BULLETIN

DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV) und des Verbandes Schweizerischer Elektrizitätswerke (VSE)

Experimentelle Ermittlung der Ersatzschemata und der Parameter einer idealisierten Synchronmaschine

Nachbildung in Rechenprogrammen

Von M. Canay

621.313.32:681.3.001.57

Die Berechnung der bei dynamischen Vorgängen einer Synchronmaschine im Feldkreis auftretenden Ströme und Spannungen ist für die Dimensionierung der Schutzeinrichtungen des Erregerkreises erforderlich. Damit diese Grössen realistisch herauskommen, muss das mathematische Gerippe der Synchronmaschine nicht nur den Stator, sondern auch den Feld- und den Dämpferkreis richtig erfassen. Nach Erläuterung dieser Tatsache wird eine Methode gegeben, um die Parameter des mathematischen Modells der idealisierten Synchronmaschine experimentell zu bestimmen.

1. Verwendete Buchstabensymbole

a	Verhältnis $i_{\rm f} \sim / i_{\rm f0}$ beim dreiphasigen Stoss-
	kurzschluss
С	Konstante, siehe Gl. (7)
if, if	Feldstromzeiger, Feldstrom, bezogen auf I_{f1}
I_{f1}	Luftspalt-Feldstrom bei Nennspannung (A)
$i_{\rm f0}, i_{\rm f} \sim$	Anfangswert, Wechselstromanteil nach dem
	Kurzschluss
k	Konstante, siehe Gl. (5)
$r_{\rm a}, r_{\rm D}, r_{\rm Q}, r_{\rm f}, r_{\rm fE}$	Widerstände (Anker, Dämpfer-Längs,
	Dämpfer-Quer, Feld, Eisen), (p. u.)
S	Schlupf
t	Zeit (s)
$T_{\rm a}, T_{\rm D}, T_{\rm f}$	Eigenzeitkonstante (Anker-Gleichstrom,
	Dämpfer, Feld) (s)
Xao	Ankerstreureaktanz
$x_{\rm c}, x_{\rm rc}$	neue fiktive Streureaktanzen (Anker, Rotor),
	(p. u.)
x_d, x_d', x_d''	Reaktanzen der Längsachse (p. u.)
x_q, x_q', x_q''	Reaktanzen der Querachse (p. u.)
$x_{\mathrm{Dc}}, x_{\mathrm{Qc}}, x_{\mathrm{fc}}$	fiktive Streureaktanzen (Dämpfer-Längs,
	Dämpfer-Quer, Feld)
u, u, u_d, u_q	Spannungszeiger, Spannung sowie deren
_	Längs- und Querkomponente (p. u.)
$u_{\rm f} \sim$	Wechselspannung in der Feldwicklung
	(p. u.)
$\sigma_{ m df}, \sigma_{ m dD}, \sigma_{ m fD}$	Streuungskoeffizienten zwischen Anker-
	Feld, Anker-Dämpfer, Feld-Dämpfer;
	alle in der Längsachse
$\mu_{\rm d}, \mu_{\rm D}, \mu_{\rm f}$	Abschirmungskoeffizienten, Anker,
	Dämpfer, Feld
λ	induktiver Anteil des Wirbelstromanteils
$arphi_{ m f}$	Phasenverschiebung des Feldstromes $i_{\rm f}$
ω	Kreisfrequenz (1/s)

2. Einleitung

Pour le dimensionnement des équipements de protection du

circuit d'exicitation d'une machine synchrone, il importe de calculer les courants et tensions apparaissant dans ce circuit, du

fait de phénomènes dynamiques. Afin d'obtenir une indication

réalistique de ces grandeurs, la structure mathématique de la

machine synchrone doit tenir correctement compte non seule-

ment du stator, mais aussi des circuits d'excitation et d'amor-

tissement. Après des explications à ce sujet, on indique une

méthode de détermination des paramètres du modèle mathéma-

tique de la machine synchrone idéalisée.

Die dynamischen Vorgänge einer Synchronmaschine werden in der bisherigen Praxis grundsätzlich nach dem Ersatzschema in Fig. 1 berechnet, welches voraussetzt, dass der Dämpfer-, der Feld- und der Ankerkreis miteinander nur durch das Hauptfeld entsprechend der Reaktanz $x_{ad} = x_d - x_{a\sigma}$ magnetisch gekoppelt sind. Auch bei anderen Vorgehensweisen ohne Ersatzschemata wird diese Annahme getroffen. Die Stabilitätsuntersuchungen mit aufwendiger Systembildung und Benützung leistungsfähigerer Computer beruhen direkt oder indirekt ebenfalls auf diesem Ersatzschema.

Man geht von den Reaktanzen x_d, x_d', x_d" und den Zeitkonstanten $T_{d'}$, $T_{d''}$ aus und verlangt zudem die Angabe der Ankerstreureaktanz $x_{a\sigma}$. Diese Grössen können entweder berechnet oder gemessen sein. Darauf ermittelt man alle Elemente des Ersatzschemas aus den in Fig. 1 angegebenen oder ähnlichen Gleichungen [1]¹). Dieses Schema bildet also den Kern der mathematischen Nachbildung der Synchronmaschine in modernen und meistens programmierten Rechenverfahren. Der berechnete Verlauf des Polradstromes oder der Polradspannung bei den Ausgleichsvorgängen stimmt aber mit der Messung nicht überein, wenn die Berechnung nach diesem herkömmlichen Ersatzschema erfolgt. Bei Stosskurzschlüssen oder beim Asynchronbetrieb rechnet man z. B. den Wechselstrom im Feldkreis für eine Schenkelpolmaschine oft zu klein und für Turbogeneratoren mit Dämpferwicklung dagegen oft zu gross, und die Abweichungen bleiben nicht immer innerhalb der zulässigen Grenzen. In der Praxis gibt es Fälle, bei denen der tatsächliche Feldstrom von Schenkelpolmaschinen zu grosse Spannungen am äusseren Feldwiderstand (für Anlauf oder Entregung) hervorrief und dadurch Schäden anrichtete. Weitere Beispiele von Abweichungen kann man auch für Turbogeneratoren mit Dämpferwicklung geben. Die konventionelle Rechnung ergibt z. B. für den Asynchronbetrieb von solchen Maschinen enorm grosse Polradspannungen, welche in Wirklichkeit nie auftreten. Obwohl diese Diskrepanzen anhand von Beispielen bereits in [2; 3] nachgewiesen wurden, soll hier noch das Resultat von einigen neuen Messungen dargelegt und dem Leser eine Möglichkeit gegeben werden, um diesen groben Fehler durch eigene Rechnungen festzustellen.

Es sei zunächst eine Schenkelpol-Synchronmaschine von 7,5 MVA mit vollständig lamellierten Polen und einer Dämpferwicklung betrachtet. Somit ist der Einfluss der massiven Eisenteile auf ein Minimum reduziert. Es handelt sich also fast um eine ideale Maschine.

Durch Stosskurzschlussversuche bei kleinen Spannungen wurden die charakteristischen Grössen wie folgt ermittelt:

$$x_{d} = 1,72$$
 $x_{d}' = 0,274$ $x_{d}'' = 0,156$ $T_{d}' = 0,86$ s
 $T_{d}'' = 0,07$ s

Die Ankerstreureaktanz beträgt $x_{a\sigma} = 0,089$. Mit diesen Werten ergibt sich das herkömmliche Schema in Fig. 2a. Aus dieser Netz-Konfiguration lässt sich nun der Strom $i_{\rm f} \sim$ im Feldkreis bei s = 1 berechnen. $i_{\rm f} \sim$ sollte gleich dem Wechselstromanteil des Feldstromes beim dreiphasigen Stosskurzschluss sein. Für die Berechnung von $i_{\rm f} \sim$ stehen ferner noch zwei bekannte Gleichungen zur Verfügung [1; 5]:

$$i_{\rm f} \sim \approx u \, \frac{x_{\rm d} - x_{\rm d}'}{x_{\rm d}''} \cdot \frac{x_{\rm d}'' - x_{\rm a\sigma}}{x_{\rm d}' - x_{\rm a\sigma}} \tag{1}$$

$$i_{\rm f} \sim \approx u \frac{x_{\rm d}}{x_{\rm d}''} (1 - \sigma_{\rm df}) \frac{\mu_{\rm D}}{\sigma_{\rm fD}}$$
 (2)

wobei σ_{df} , μ_D , σ_{fD} gemäss ihren Definitionen aus dem Ersatzschema zu ermitteln sind. Für das Ersatzschema in Fig. 2a sind sie

$$\sigma_{
m df} = 0,159$$
 $\mu_{
m D} = 0,0604$ $\sigma_{
m fD} = 0,167$

Das Resultat dieser 3 Rechnungsarten [Netzkonfiguration, Gl. (1) bzw. (2)], welche sich nur wegen der Annäherungen in Gl. (1) und (2) geringfügig unterscheiden, ist in Fig. 3 aufgetragen (gestrichelte Kurve). In der gleichen Figur sieht man

1) Siehe Literatur am Schluss des Aufsatzes.

auch die Messpunkte. Das Resultat der oben erwähnten konventionellen Berechnung weicht von den gemessenen Punkten sehr stark ab. Der gemessene Polradstrom ist fast doppelt so gross wie der berechnete, obwohl das Objekt mit seinen vollständig lamellierten Polen die Voraussetzungen der «idealen Maschine» am besten erfüllt.

Ein zweites und noch drastischeres Beispiel ist in Fig. 4 dargestellt. Diesmal handelt es sich um einen grossen Turbogenerator von 300 MVA. Der Polradstrom bei kurzgeschlossener und die Polradspannung bei offener Feldwicklung wurden wiederum in Funktion der Klemmenspannung bei s = 1gemessen und aufgetragen. Die ebenfalls gemessenen charakteristischen Grössen sind:

$$x_{d} = 1,97$$
 $x_{d}' = 0,333$ $x_{d}'' = 0,27$ $T_{d}' = 0,86$ s
 $T_{d}'' = 0,035$ s

und die Ankerstreureaktanz beträgt 0,237 p. u.

Gemäss den Gleichungen in Fig. 1 erhält man für diesen Turbogenerator das Ersatzschema in Fig. 2b. Aus diesem herkömmlichen Schema wurden nun nicht nur der Polradstrom, sondern auch noch die Polradspannung bei s = 1 berechnet. Für die Polradspannung gilt angenähert [5]:

$$u_{\rm f} \sim \approx u \left(1 - \sigma_{\rm df}\right) T_{\rm f} \frac{\mu_{\rm D}}{\sigma_{\rm dD}}$$
 (3)

Das Resultat weicht von der Messung auch bei diesem Beispiel ziemlich stark ab. Der gemessene Polradstrom ist diesmal ca. 4mal und die Polradspannung sogar ca. 10mal kleiner als die jeweiligen Messwerte (Fig. 4).

In Tabelle I wurden weitere Messresultate von 7 Vollpolund 4 Schenkelpolgeneratoren zusammengestellt. Die Elemente des herkömmlichen Ersatzschemas (Fig. 1) sowie $i_{\rm f} \sim$ beim dreiphasigen Stosskurzschluss und $u_{\rm f} \sim$ beim Stillstandversuch sind ebenfalls berechnet und angegeben. Die erschreckenden Abweichungen zwischen den gemessenen und den aus dem herkömmlichen Schema berechneten $i_{\rm f} \sim$ und $u_{\rm f} \sim$ sind hier

(Die Zahlen in Klammern stammen aus der korrekten Nachbildung gemäss Fig. 5a)

Bull. ASE 63(1972)20, 30 septembre

deutlich zu sehen. Die Ursache dieser Unstimmigkeiten ist die Annahme, dass der Anker-, der Dämpfer- und der Feldkreis miteinander nur durch das Hauptfeld der Grundwelle magnetisch gekoppelt sind (u. a. [1]). Diese immer wieder getroffene willkürliche Annahme verstösst gegen die Physik und die Struktur der Maschine [2]. Man darf sich deswegen fragen, warum dieses unzutreffende und nur den Ankerkreis richtig nachbildende Modell immer noch benutzt wird, obwohl es unter Umständen ca. 30mal grössere Werte (Feldspannung bei Maschine 1) oder ca. 3,5mal kleinere Resultate (Feldstrom bei Maschine 11) gegenüber der Wirklichkeit liefert.

Diese Fehler bei der Berechnung der Polradgrössen beeinträchtigen nicht nur die richtige Dimensionierung der Schutzeinrichtungen des Erregerkreises, sondern auch die Stabilitätsuntersuchungen. Da die vom Spannungsregler beeinflussten Polradgrössen in dem herkömmlichen Ersatzschema nicht richtig herauskommen, können solche Untersuchungen ein verfälschtes Bild ergeben.

Man kann zusammenfassen: Das Ersatzschema in Fig. 1 ist nichts anderes als eine mathematische Zerlegung des Reaktanzoperators in drei willkürliche, parallele Zweige «a», «D» und «f». D und f stellen nicht den Dämpfer- und den Feldkreis dar, sondern nur je einen fiktiven parallelen Zweig. Deshalb ist die mathematische Nachbildung der Synchronmaschine nach Fig. 1 in den vielen Rechenmethoden nicht korrekt.

3. Richtige Ersatzschemata der idealisierten Synchronmaschine

In Ersatzschemata einer wirklichen Synchronmaschine müssen auch die eventuell vorhandenen massiven Eisenteile des Rotors berücksichtigt werden, insbesondere wenn der Asynchronbetrieb (Lauf oder Anlauf) berechnet werden soll. Dies ist bei Maschinen mit einer schwachen Dämpferwicklung oder mit massiven Polen von entscheidender Bedeutung. Bei solchen Maschinen gibt es in Wirklichkeit nicht nur transiente und subtransiente, sondern theoretisch unendlich viele Zeitkonstanten. Es ist sowohl physikalisch als auch mathematisch nicht möglich, eine Synchronmaschine mit frequenzunabhängigen Widerständen mit nur zwei Ersatzkreisen im Rotor für alle vorkommenden Betriebsfälle gleich gut nachzubilden. Beschränkt man sich aber nur auf die Stabilitätsuntersuchungen (kein Asynchronbetrieb), so bringt die Berücksichtigung von mehreren Zeitkonstanten jedoch keine erhebliche Verbesserung der erzielten Genauigkeit. Ferner hat die angestrebte Genauigkeit auch eine durch die Messungenauigkeit bedingte Grenze. Deshalb soll die Synchronmaschine mit der oben erwähnten Beschränkung und Vereinfachung idealisiert, d. h. nur durch zwei Ersatzrotorkreise mit konstanten (frequenzunabhängigen) Reaktanzen und Widerständen dargestellt werden. Die dadurch entstehenden Fehler können bis 10 ... 20% betragen.

Erst im Jahre 1961, nachdem in [4] das Ersatzschema der Längsachse einer idealisierten Synchronmaschine im Rahmen der Zweiachsentheorie mathematisch exakt nachgebildet

---- Berechnung nach dem herkömmlichen Schema in Fig. 1 ----- neue Berechnung wurde, zeigte sich deutlich, dass ein Ersatzschema in der Form wie in Fig. 1 nur dann auch den Dämpfer- und den Feldkreis richtig darstellt, wenn darin anstelle von $x_{a\sigma}$ eine neue Reaktanz $x_c = \mu_d x_d$ eingesetzt wird (Fig. 5a), wobei μ_d den Abschirmungskoeffizienten von *Laible* [5] darstellt. Die neue Reaktanz x_c hängt von der magnetischen Kopplung der Feldwicklung mit der Dämpferwicklung ab und ist deshalb normalerweise nicht gleich der Ankerstreureaktanz [2; 3]. Es gibt aber auch manche Schenkelpolmaschinen mit lamellierten Polen oder Turbogeneratoren ohne Dämpferwicklung, bei denen x_c zahlenmässig der Ankerstreureaktanz gleich ist. Trotzdem darf im allgemeinen anstelle von x_c nie die Ankerstreureaktanz $x_{a\sigma}$ eingesetzt werden.

Wenn man in der Herleitung eines Ersatzschemas nicht nur auf mathematische Richtigkeit, sondern auch auf eine korrekte Interpretation der magnetischen Haupt- und Streufelder Wert legt, dann bevorzugt man für eine idealisierte Synchronmaschine das Ersatzschema in Fig. 5b [3]. Hier wird wieder $x_{a\sigma}$ eingeführt, aber nicht mehr vorausgesetzt, dass alle drei Kreise (Anker, Feld und Dämpfer) der Längsachse miteinander nur über das Hauptfeld magnetisch gleich gut gekoppelt sein sollen. Ist die magnetische Kopplung zwischen Feld- und Dämpferkreis besser als diejenige zwischen Anker und Feld, wie dies bei Turbogeneratoren der Fall ist, so wird $x_{rc} > 0$. Der Rotor eines Turbogenerators wirkt also in der Längsachse wie ein Doppelkäfigrotor. Bei Schenkelpolmaschinen dagegen ist die verteilte Dämpferwicklung mit der Ankerwicklung oft besser gekoppelt als mit der Feldwicklung, d. h. $x_{re} < 0$. Wie oben bei x_c erwähnt, kann aber bei manchen Maschinen $x_{\rm re} = 0$ oder sogar $x_{\rm re} > 0$ sein. Für die physikalische Erläuterung dieser Tatsache sei auf [2; 3] verwiesen.

Es gibt einen weiteren Effekt, der bei mathematischen Modellen einer idealisierten Synchronmaschine in Betracht gezogen werden muss, wenn die Spannung im Feldkreis bei dynamischen Vorgängen untersucht werden soll. Ein Beispiel: Synchronmaschinen mit Gleichrichtererregung. Wird der Strom in der Feldwicklung negativ, kann er nicht mehr fliessen, und dadurch entsteht eine Spannung an den Klemmen der Feldwicklung. Wenn aber die Feldwicklung einer Synchronmaschine mit massivem Polkern (Turbo oder Schenkelpol) offen bleibt, kann ein Rotorstrom auch in den Nutwänden oder in den Polwänden fliessen, da diese bei massiven Rotoren einen geschlossenen Kreis um das Feld herum bilden. Dieser Kreis wirkt parallel zu der Feldwicklung und weist, infolge der gleichen räumlichen Plazierung, fast die gleiche Haupt- und Streuinduktivität auf wie die Feldwicklung. Dagegen ist der Widerstand dieses Kreises bedeutend grösser, so dass der Strom bei geschlossenem Polradkreis in der Feldwicklung bleibt. Ist die Feldwicklung aber offen, so werden die Nut- oder Polwände mit ihrem Wirbelstromwiderstand r_{fE} in Aktion treten. Im Ersatzschaltbild des massiven Rotors muss also der Polradwiderstand $r_{\rm f}$ durch $r_{\rm fE}$ ersetzt werden, wenn der Strom in der Feldwicklung nicht fliessen kann [3] (Fig. 5b, gestrichelter Zweig). Der Wirbelstromwiderstand ist nicht rein Ohmisch, sondern hat auch einen induktiven Anteil, welcher ca. 60% des Ohmschen Anteils ausmacht ($\lambda = 0,6$). Wenn man also $r_{\rm fE}$ in erster Annäherung als rein Ohmisch annehmen will, dann ist es angebracht, den Wert von $r_{\rm fE}$ mit $\sqrt{1 + \lambda^2} = 1,15$ zu multiplizieren.

Man kann zusammenfassen:

a) Ohne willkürliche Annahme über die gegenseitigen Reaktanzen kann das Ersatzschema der Längsachse einer idealisierten Synchronmaschine in der herkömmlichen Form nur dann benutzt werden, wenn anstelle der Ankerstreureaktanz die neue Reaktanz x_e eingesetzt wird (Fig. 5a).

b) Will man aber z. B. den Sättigungseinfluss am Luftspaltfeld (hinter der Reaktanz $x_{a\sigma}$) berücksichtigen, dann muss $x_{a\sigma}$ beibehalten, aber für die richtige Nachbildung der magnetischen Kopplung zwischen den Feld- und Dämpferkreis x_{re} eingeführt werden, so dass $x_{ad} + x_{re}$ die gegenseitige Reaktanz x_{fD} wird. Somit entsteht das Schema in Fig. 5b. Für die Spannung bei offener Feldwicklung ist die Berücksichtigung des massiven Polkerns (Nutwände oder Polwände) durch einen Widerstand 1,15 r_{fE} parallel zu r_{f} notwendig.

c) Das Ziel der vorliegenden Arbeit besteht daher darin, eine Methode zu geben, mit welcher die Reaktanzen und Widerstände in den Ersatzschemata der idealisierten Synchronmaschine (Fig. 5a und b) experimentell bestimmt werden können.

4. Experimentelle Ermittlung der Kenngrössen der Ersatzschemata

4.1 Längsachse

Die Synchronreaktanz x_{d} und die Streureaktanz $x_{a\sigma}$ sowie der Ohmsche Ankerwiderstand r_{a} werden als bekannt angenommen. Somit bleiben 5 Grössen zu ermitteln. Diese sind: x_{rc} , x_{Dc} , x_{fc} , r_{D} , r_{f} (Fig. 5b). Für die Vorgänge, bei denen der Feldkreis offen bleibt, ist noch r_{fE} zu bestimmen.

Wenn die Synchronmaschine keine massiven Eisenteile im Rotor gehabt hätte (ideale Maschine), könnte man die Kenngrössen des Ersatzschemas nach [7] bestimmen. Die Methode beruht auf der Messung der subtransienten Reaktanz x''_{d0} bei offener Feldwicklung. Laut Theorie muss x''_{d0} gleich $\sigma_{dD} x_d$ sein, welche in der Grössenordnung von x_d' liegt. Wenn $\sigma_{dD} x_d$ messbar wäre, könnte man daraus σ_{dD} ermitteln. Bei Turbogeneratoren sowie bei Maschinen mit massiven Polen ist das gemessene x''_{d0} infolge des im vorhergehenden Kapitel erwähnten Wirbelstromwiderstandes $r_{\rm fE}$ nicht mehr gleich $\sigma_{\rm dD} x_{\rm d}$. Die zahlreichen Stillstandsmessungen haben gezeigt, dass $x''_{\rm d0}$ bei solchen Maschinen fast gleich gross wie $x_{\rm d}''$ ist.

Eine andere Idee ist, dass man die Synchronmaschine als einen Vierpol betrachtet. Diese Methode kann auch keinen Erfolg haben, wenn man bei den Bestimmungsgleichungen der Kenngrössen die Existenz von r_{TE} und dessen Effekt nicht berücksichtigt. Ferner müssen auch noch die unterschiedlichen Sättigungsverhältnisse bei den einzelnen Messungen berücksichtigt werden.

Die Kenngrössen der Ersatzschemata können aber ohne grossen Aufwand sowohl für eine ungesättigte als auch für eine gesättigte Maschine aus den Stosskurzschlussversuchen ermittelt werden. Solche Versuche sind geläufig, und sie werden zur Bestimmung der charakteristischen Grössen oder zur Überprüfung der mechanischen Festigkeit des Generators oft durchgeführt. Anschliessend werden die charakteristischen Grössen x_d', x_d'', T_d' und T_d'' aus dem Verlauf des Statorstromes gemäss ASA- oder CEI-Normen bestimmt. Wenn das Abklingen des Statorstromes mit mehr als zwei Zeitkonstanten erfolgt, was bei Maschinen mit massiven Polen oft der Fall ist, wird der Verlauf angenähert wiederum mit zwei Zeitkonstanten $T_d',$ T_d'' und den dazugehörigen Reaktanzen x_d', x_d'' nachgebildet. Je gröber diese Annäherung ist, desto gröber wird die Nachbildung.

Bei der somit ermittelten Zeitkonstante $T_{d'}$ ist noch zu beachten, dass der Feldkreis bei dem Stosskurzschlussversuch infolge der Zuleitungen einen zusätzlichen Ohmschen Widerstand $\Delta r_{\rm f}$ haben kann, welcher je nach der Versuchseinrichtung und dem Verhältnis des Bürstenspannungsabfalls zur Erregerspannung ca. (0,01 ... 0,2)mal Feldwiderstand $r_{\rm f}$ beträgt. $\Delta r_{\rm f}$ beeinflusst die Reaktanzen $x_{d''}$, $x_{d'}$ nicht, er verkleinert aber $T_{d'}$ fast proportional. Deshalb ist es für einen Vergleich von verschiedenen Messresultaten, bei denen $\Delta r_{\rm f}$ unterschiedlich ist, notwendig, auch $\Delta r_{\rm f}$ anzugeben.

Für den Verlauf des Feldstromes beim dreiphasigen Kurzschluss mit vorangegangenem Leerlauf gilt (siehe Anhang):

$$a = \frac{\text{Amplitude des Wechselstromes bei } t = 0}{\text{Erregerstrom vor dem Kurzschluss}} = \frac{it}{u}$$

Man kann nun aus Gl. (4) und (5) herleiten, dass für *a* mit sehr guter Annäherung gilt (siehe Anhang):

$$a = \frac{x_{\rm d} - x_{\rm d}'}{x_{\rm d}''} \cdot \frac{x_{\rm d}'' - x_{\rm c}}{x_{\rm d}' - x_{\rm c}} c$$
(6)

mit

$$c \approx \left| \frac{1 + j \,\mu_{\rm D} \,T_{\rm D} \,\omega}{i \,\mu_{\rm D} \,T_{\rm D} \,\omega} \right| \approx \frac{1}{\sqrt{1 - \left(\frac{x_{\rm d} - x_{\rm d}'}{a \,x_{\rm d}' \,T_{\rm d}'' \,\omega}\right)^2}} \tag{7}$$

Der Faktor *c* ist nichts anderes als das Verhältnis der Impedanz $r_{\rm D} + j x_{\rm Dc}$ zur Reaktanz $x_{\rm Dc}$ des Dämpferkreises beim Ersatzschema in Fig. 5a. Wegen $r_{\rm D} \ll x_{\rm Dc}$ ist oft $c \approx 1$. Bei sehr grossen Turbogeneratoren kann *c* jedoch grösser als 1 sein $(r_{\rm D} > x_{\rm Dc})$.

Das Verhältnis *a* kann mit Leichtigkeit aus dem Verlauf des Feldstromes beim dreiphasigen Stosskurzschlussversuch gewonnen werden. Zu diesem Zweck wird auch der Feldstrom oszillographisch aufgenommen. Trägt man den zeitlichen Verlauf der Amplitude $2i_{\rm fr} \sim$ (Fig. 6) in halblogarithmischen Koordinaten auf, so ergibt sich eine Gerade. Daraus kann das Verhältnis *a* mit sehr guter Genauigkeit ermittelt werden. Somit ist *c* gemäss Gl. (7) auch bekannt. Die Bestimmung der neuen Reaktanz x_c kann nun aus Gl. (6) erfolgen. Es ergibt sich:

$$x_{d}'' - x_{c} = x_{d}'' \frac{a}{c} \cdot \frac{x_{d}' - x_{d}''}{x_{d} - x_{d}' - \frac{a}{c} x_{d}''}$$
(8)

Nun können die anderen Reaktanzen und Widerstände der Ersatzschemata in Fig. 5 bestimmt werden. Um die Anzahl der Gleichungen zu reduzieren, führt man eine frei wählbare Reaktanz x ein.

- $x = x_c$ Ersatzschema in Fig. 5a für Untersuchungen ohne Sättigungseinfluss.
- $x = x_{a\sigma}$ Ersatzschema in Fig. 5b für Untersuchungen mit Sättigungseinfluss.

$$i_{\rm f} = i_{\rm f0} + u \, \frac{x_{\rm d} - x_{\rm d}'}{x_{\rm d}} \cdot \frac{T_{\rm f}}{T_{\rm d}'} \left[e^{-\frac{t}{T_{\rm d}'}} - (1 - k \cos \varphi_{\rm f}) e^{-\frac{t}{T_{\rm d}''}} - k e^{-\frac{t}{T_{\rm a}}} \cos \left(\omega \, t - \varphi_{\rm f}\right) \right] \tag{4}$$

wobei k und φ_{f} definiert sind durch:

$$k e^{-j\varphi_{\rm f}} = \frac{1+j\omega\,\mu_{\rm D}\,T_{\rm D}}{1+j\omega\,T_{\rm d}^{"}} \tag{5}$$

Bei Turbogeneratoren kann die Phasenverschiebung φ_f gut beobachtet werden, wie dies in Fig. 6 schematisch angedeutet ist.

Bei Maschinen ohne Dämpferkreis ist k = 1, sonst $k = 0,05 \dots 1,1$. Der kleinere Wert kommt bei Turbogeneratoren mit sehr guter Dämpferwicklung vor. Der grössere Wert dagegen kann bei schnellaufenden Schenkelpolmaschinen mit lamellierten Polen und guter Dämpferwicklung auftreten, welche die subtransiente Reaktanz x_d gegenüber x_d erheblich verkleinert (x_d $\approx 0,5 x_d$), aber die Feldwicklung nicht im gleichen Verhältnis abschirmt.

Die Amplitude des Wechselstromes $i_{f} \sim$ bei t = 0 steht zu dem Feldstrom ($i_{f0} = u$) vor dem Kurzschluss in einem bestimmten Verhältnis *a* (Fig. 6).

Die Bestimmungsgleichungen für die anderen Reaktanzen sind:

$$x_{\rm re} = (x_{\rm c} - x) \frac{x_{\rm d} - x}{x_{\rm d} - x_{\rm c}}$$
 (9)

$$x_{\rm Dc} = \frac{(x_{\rm d}' - x_{\rm c}) (x_{\rm d}'' - x_{\rm c})}{x_{\rm d}' - x_{\rm d}''} \left(\frac{x_{\rm d} - x}{x_{\rm d} - x_{\rm c}}\right)^2$$
(10)

$$x_{\rm fc} = \frac{(x_{\rm d}' - x_{\rm c}) (x_{\rm d} - x_{\rm c})}{x_{\rm d} - x_{\rm d}'} \left(\frac{x_{\rm d} - x}{x_{\rm d} - x_{\rm c}}\right)^2 \tag{11}$$

Für die Blondelschen Streukoeffizienten oder Laibleschen Abschirmungskoeffizienten gelten laut Definition:

$$1 - \sigma_{df} = (1 - \mu_d) (1 - \mu_f) =$$

$$= \frac{(x_d - x)^2}{x_d (x_d - x + x_{rc} + x_{fc})} = \frac{x_d - x_d'}{x_d} \quad (12)$$

$$1 - \sigma_{\rm dD} = (1 - \mu_{\rm d}) (1 - \mu_{\rm D}) =$$

$$= \frac{(x_{\rm d} - x)^2}{x_{\rm d} (x_{\rm d} - x + x_{\rm re} + x_{\rm De})}$$
(13)

Bull. SEV 63(1972)20, 30. September

(A 777) 1141

$$1 - \sigma_{\rm fD} = (1 - \mu_{\rm f}) (1 - \mu_{\rm D}) =$$

$$=\frac{(x_{\rm d}-x+x_{\rm rc})^2}{(x_{\rm d}-x+x_{\rm rc}+x_{\rm fc})(x_{\rm d}-x+x_{\rm rc}+x_{\rm Dc})}$$
(14)

Die Zahlenwerte dieser Koeffizienten sind selbstverständlich unabhängig von der Wahl der Reaktanz x oder der Form des Ersatzschemas, da sie rein die tatsächlichen magnetischen Kopplungen charakterisieren.

Die ohmschen Widerstände lassen sich laut Definition aus den Eigenzeitkonstanten $T_{\rm f}$ und $T_{\rm D}$ der Rotorkreise bestimmen Es gelten

$$r_{\rm f} = \frac{x_{\rm d} - x + x_{\rm re} + x_{\rm fe}}{T_{\rm f} \, \omega} \tag{15}$$

$$r_{\rm D} = \frac{x_{\rm d} - x + x_{\rm re} + x_{\rm fe}}{T_{\rm D}\,\omega} \tag{16}$$

mit

$$T_{\rm f} = \frac{x_{\rm d}}{x_{\rm d}'} \left[T_{\rm d}' + T_{\rm d}'' \left(1 - \frac{x_{\rm d}'}{x_{\rm d}''} \cdot \frac{\sigma_{\rm dD}}{\sigma_{\rm fD}} \right) \right]$$
(17)

$$T_{\rm D} = \frac{x_{\rm d}'}{x_{\rm d}''} \cdot \frac{T_{\rm d}' T_{\rm d}''}{\sigma_{\rm fD} T_{\rm f}}$$
(18)

Für die Herleitung der Gl. (17) und (18) sei auf den Anhang verwiesen.

Somit sind alle Grössen des Ersatzschemas der Längsachse einer idealisierten Synchronmaschine bekannt. Sie gelten bei den Sättigungsverhältnissen, welche beim Stosskurzschlussversuch vorhanden waren. Dieses mathematische Modell stellt nicht nur den Anker-, sondern auch den Dämpfer- und den Feldkreis richtig dar. Die Bezugsgrössen des Feldkreises sind in Fig. 5 bereits angegeben.

Für Untersuchungen mit offener Feldwicklung ist zudem der Widerstand r_{fE} zu bestimmen. Theoretisch ist es möglich, den Stosskurzschlussversuch mit einem ca. 10fach vergrösserten Feldkreis-Widerstand zu wiederholen und aus der Änderung des Widerstandes r_{f} den Wert für r_{fE} zu ermitteln. Diese

Bestimmung von $i_{\rm f} \sim$ und a

Vorgehensweise kann jedoch manchmal infolge der Messungenauigkeiten zu einem unrealistischen Resultat führen. In solchen Fällen ist es ratsam, $r_{\rm fE}$ durch Stillstandsversuche zu bestimmen. Im Stillstand wird die Maschine einphasig-zweisträngig gespeist, wobei die Achse des Wechselfeldes mit derjenigen des Rotors (Längsstellung) übereinstimmt. Aus diesem Versuch erhält man das Verhältnis $u_{\rm f} \sim /u$. Unter der Voraussetzung, dass der eingeprägte Polradstrom im Falle der offenen Feldwicklung über den Wirbelstromwiderstand $r_{\rm fE}$ fliesst (s. Fig. 5b), kann man schreiben

$$1,15 \frac{r_{\rm fE}}{r_{\rm f}} \approx \frac{u_{\rm f} \sim /u}{i_{\rm f} \sim /u} \tag{19}$$

Eine Verfeinerung dieser Gleichung lohnt sich nicht, da $r_{\rm fE}$ sehr stark sättigungsabhängig ist, und die Sättigungsverhältnisse bei Stosskurzschlüssen und Stillstandsmessungen verschieden sind. Mit der groben Annäherung in Gl. (19) bleibt die Rechnung der Polradspannung auf der sicheren Seite.

Die oben beschriebene Methode wurde auf die 11 Maschinen der Tabelle I angewandt, und die somit ermittelten Kenngrössen und Streuungskoeffizienten wurden in Tabelle II zusammengestellt. Ein Vergleich der gemessenen $i_{\rm f} \sim /u$ und $u_{\rm f} \sim /u$ mit dem Resultat der neuen Rechnung erübrigt sich, da die Methode selbst auf diesen Messungen beruht.

In Tabelle II sind auch die Resultate der konventionellen Vorgehensweise nach Fig. 1 eingetragen. Sie ermöglicht einen Vergleich der verschiedenen Parameter. Daraus ist ersichtlich, dass die grösste Abweichung hauptsächlich beim Streuungskoeffizient $\sigma_{\rm fD}$ zwischen Feld- und Dämpferkreis besteht.

4.2 Querachse -

Es sei angenommen, dass die charakteristischen Grössen x_q , x_q' , x_q'' und T_q' , T_q''' aus den Stosskurzschlussversuchen in der Querachse bestimmt worden sind [6]. Da kein Rotorkreis in der Querachse von aussen her zugänglich ist, genügt es, nur den Stator richtig nachzubilden. Für diesen Zweck sind die Gleichungen und das Ersatzschema in Fig. 1 völlig ausreichend. Deshalb kann man für die Querachse analog zu Fig. 1 das Ersatzschema in Fig. 7 geben. Die parallelen Zweige 1 und 2 sind nun je ein fiktiver Kreis. Die Bestimmungsgleichungen der Kenngrössen x_{Q1} , x_{Q2} usw. sind in Fig. 7 ebenfalls enthalten.

Vergleich der gemessenen	Feldgrössen mit der	Berechnung gemäss Fig.	1 (herkömmliche Methode)
--------------------------	---------------------	------------------------	--------------------------

Maschine				Gemessene charakteristische Grössen						$i_{\rm f} \sim /u$		$u_{f} \sim u $	
Nr.	MVA	kV	r. p. m.	xd	x_{d}'	<i>x</i> d″	x _{ao}	T _d '	T _d ″	Gemes- sen ¹)	Berechnet	Gemes- sen ²)	Berechnet
1	722	22	3600	1,96	0,334	0,26	0,19	0,87	0,026	0,55	3,04	21,3	697
2	490	24	3000	2,17	0,34	0,25	0,189	1,35	0,032	0,79	2,96	42	840
3	300	18	3000	2,1	0,37	0,275	0,23	1,25	0,030	0,54	2,02	31	440
4	300	18	3000	1,97	0,333	0,27	0,237	0,86	0,035	0,47	2,08	12,2	245
5	228	15,5	3000	2,06	0,28	0,21	0,19	0,9	0,025	0,94	1,88	39	226
6	222	15,75	3000	1,87	0,207	0,15	0,128	0,88	0,036	1,3	3,09	· · · · · ·	
7	13	15,5	3000	1,46	0,11	0,085	0,07	0,45	0,025	4,8	5,96	130	438
8	118	15,75	600	1,23	0,29	0,18	0,144	2,7	0,032	1,7	1,29		
9	86	12	428,6	1,40	0,44	0,29	0,208	1,65	0,046	1,75	1,17	_	
10	7,5	15,5	1500	1,72	0,274	0,156	0,089	0,86	0,07	6,5	3,35	1320	781
11	7,5	5,5	1500	1,42	0,222	0,12	0,096	0,72	0,026	6,5	1,9	760	299

¹) Kurzschlussversuche; ²) Stillstandsversuche

Sind x_q' , T_q' , T_q'' nicht bekannt, dann müssen diese Grössen geschätzt werden. Sie sind selbstverständlich von der Konstruktion des Rotors abhängig. Als Richtwerte kann man angeben, dass T_q'' in der Grössenordnung von T_d'' liegt und T_q' ca. 10mal grösser als T_q'' ist. x_q' ist dagegen ungefähr doppelt so gross als x_q'' .

5. Zusammenfassung

Tabelle I

Die Berechnung der Feldgrössen (Spannung und Strom) bei den dynamischen oder quasistationären Vorgängen einer Synchronmaschine weicht von der Messung sehr stark ab, wenn die Berechnung in der konventionellen Vorgehensweise, d. h. nach dem herkömmlichen Ersatzschema erfolgt. Anhand von

Kenngrössen und Streuungskoeffizienten nach dem neuen (Fig. 5b) bzw. herkömmlichen Ersatzschema (Fig. 1)

		Termsrosser	n und Streuung	noejjizienien n	ach ach heach	(1.8.00) 02		inchen Liburzo		Tabelle II
Maschine	Schema	Xrc	XDe	$x_{\rm fc}$	۳D	rī	$\frac{r_{\rm fE}}{r_{\rm f}}$	σdf	$\sigma_{ m dD}$	$\sigma_{\rm fD}$
1	5b	0,070	0,0033	0,087	0,0063	0,00109	34	0,170	0,133	0,0468
	1	0	0,136	0,157	0,0220	0,00101	∞	0,170	0,161	0,1470
2	5b	0,055	0,0089	0,109	0,0078	0,00083	46	0,157	0,115	0,0549
	1	0	0,1023	0,164	0,0183	0,00080	∞	0,157	0,132	0,1216
3	5b	0,0426	0,0036	0,109	0,0044	0,00096	50	0,176	0,131	0,0555
	1	0	0,0663	0,151	0,0103	0,00092	∞	0,176	0,14	0,1065
4	5b	0,032	0,0016	0,070	0,0044	0,00133	22	0,169	0,137	0,0388
	1	0	0,0503	0,102	0,0103	0,0012	∞	0,169	0,145	0,0820
5	5b	0,016	0,0045	0,0786	0,0072	0,0010	37	0,136	0,102	0,0423
	1	0	0,0257	0,0946	0,0106	0,00098	∞	0,136	0,104	0,0610
6	5b 1	0,016 0	0,007 0,0305	0,067 0,083	0,0042 0,0068	0,00079 0,00076	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0,111 0,111	0,0806 0,0845	0,0404 0,0618
7	5b	0,005	0,0141	0,0362	0,0045	0,00082	23	0,0753	0,061	0,035
	1	0	0,024	0,0412	0,0060	0,00080	∞	0,0753	0,064	0,045
8	5b 1	- 0,0155 0	0,0738 0,0478	0,184 0,169	0,0142 0,0119	0,00035 0,00035	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0,236 0,236	0,162 0,154	0,202 0,171
9	5b 1	- 0,0525 0	0,323 0,195	0,386 0,333	0,028 0,021	0,00094 0,00095	$\overline{\infty}$	0,314 0,314	0,285 0,248	0,411 0,323
10	5b 1	- 0,185 0	0,725 0,105	0,394 0,209	0,0267 0,0074	0,00109 0,00110	$176 \\ \infty$	0,16 0,16	0,287 0,109	0,477 0,167
11	5b	- 0,146	0,422	0,285	0,043	0,00101	102	0,157	0,228	0,407
	1	0	0,030	0,139	0,010	0,00103	∞	0,157	0,088	0,115

Beispielen an 11 Synchronmaschinen wurde gezeigt, dass das herkömmliche Modell unter Umständen ca. 30mal grössere Feldspannungen oder ca. 3,5mal kleinere Feldströme als die jeweiligen Messwerte liefern kann. Die Ursache dieser Unstimmigkeiten ist die Tatsache, dass der Feld- und der Dämpferkreis in der konventionellen Vorgehensweise nicht richtig nachgebildet werden.

Für eine realistischere Berechnung muss die mathematische Nachbildung einer «idealisierten Synchronmaschine» in den Rechenprozessen derart erfolgen, dass man dabei sowohl den Anker- als auch den Feld- und den Dämpferkreis richtig erfasst. Es wurde gezeigt, dass die Kenngrössen eines derartigen Ersatzschemas sowie die Streuungskoeffizienten der Maschine (wenn man kein Ersatzschema benützt) experimentell aus den Stosskurzschlussversuchen ohne grossen Aufwand ermittelt werden können. Alle diesbezüglichen Unterlagen wurden an-

Für die Rücktransformation und für den resultierenden Feldstrom *i*f gelten:

$$\underline{i}_{t} = \frac{Q(0)}{P(0)} + \sum_{x} \frac{Q(\alpha_{x})}{\alpha_{x} P'(\alpha_{x})} e^{\alpha_{x} t}$$
(A 2)

$$i_{\rm f} = i_{\rm f0} + {\rm Re}\left[i_{\rm f}\right] \tag{A 3}$$

wobei α_x die Wurzeln der Gleichung P(p) = 0 und $P'(\alpha_x)$ die erste Ableitung des Polynoms P(p) an der Stelle $p = \alpha_x$ darstellen. Nach der Anwendung ergibt sich mit

$$lpha_1=-rac{1}{T_{
m d}'\,arpi} lpha
onumber \ lpha_2=-rac{1}{T_{
m d}''\,arpi} lpha
onumber \ lpha_3=-j-rac{1}{T_{
m a}\,arpi}$$

$$\begin{split} \dot{I}_{f} &= -j\,\underline{u}\,(1-\sigma_{df})\,T_{f}\left\{\frac{T_{d}'-\mu_{\rm D}\,T_{\rm D}}{T_{d}'-T_{d}''}\cdot\frac{j\omega}{\left(\frac{1}{T_{\rm a}}-\frac{1}{T_{\rm d}'}\right)+j\,\omega}\cdot\frac{1}{T_{d}'}\,\mathrm{e}^{-\frac{t}{T_{d}'}}+\frac{T_{d}''-\mu_{\rm D}\,T_{\rm D}}{T_{d}''-T_{d}'}\cdot\\ &\cdot\frac{j\omega}{\left(\frac{1}{T_{\rm a}}-\frac{1}{T_{d}''}\right)+j\,\omega}\cdot\frac{1}{T_{d}''}\,\mathrm{e}^{-\frac{t}{T_{d}''}}-j\,\omega\,\frac{\left(\frac{1}{T_{\rm a}}-\frac{1}{\mu_{\rm D}}\,T_{\rm D}\right)+j\,\omega}{\left[\left(\frac{1}{T_{\rm a}}-\frac{1}{T_{d}''}\right)+j\,\omega\right]}\cdot\frac{\mu_{\rm D}\,T_{\rm D}}{T_{\rm d}''}\,\mathrm{e}^{-\frac{t}{T_{\rm a}}-j\,\omega\,t}\right\} \end{split}$$

gegeben. Das somit gewonnene Modell gibt nicht nur die Statorgrössen, sondern auch die Polradgrössen (Strom, Spannung)

Unter der Voraussetzung, dass T_a und T_d' viel grösser als $T_{\rm d}''$ und $\mu_{\rm D}T_{\rm D}$ sind, erhält man

$$\underline{i}_{f} = -j\,\underline{u}\,(1 - \sigma_{df})\,\frac{T_{f}}{T_{d}'}\left[e^{-\frac{t}{T_{d}'}} - \left(1 - \frac{1 - j\,\mu_{D}\,T_{D}\,\omega}{1 - j\,T_{d}''\,\omega}\right)e^{-\frac{t}{T_{d}''}} - \frac{1 - j\,\mu_{D}\,T_{D}\,\omega}{1 - j\,T_{d}''\,\omega}e^{-\frac{t}{T_{a}} - j\,\omega\,t}\right]$$

richtig wieder. Eine Kontrolle der neuen Berechnungsart an gemessenen Vorgängen erübrigt sich, weil die Elemente der neuen Nachbildung in der gezeigten Weise direkt aus solchen Messungen bestimmt werden.

etzt man hier
$$u = u_d + ju_q = jue^{-j\delta}$$
 ein, und mit

$$\frac{1-j\,\mu_{\rm D}\,T_{\rm D}\,\omega}{1-j\,T_{\rm d}{}''\,\omega}=k{\rm e}^{{\rm j}\,\varphi{\rm r}},\qquad x{\rm d}'\approx\sigma_{\rm df}\,x{\rm d}$$

ergibt sich für i_f gemäss Gl. (A 3):

$$i_{\rm f} = i_{\rm f0} + \frac{x_{\rm d} - x_{\rm d}'}{x_{\rm d}} \cdot \frac{T_{\rm f}}{T_{\rm d}'} \left\{ u_{\rm q} \, \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{T}_{\rm d}'}} - \right.$$
$$\left. - \left[(1 - k\cos\varphi_{\rm f}) \, u_{\rm q} - u_{\rm d} \, k\sin\varphi_{\rm f} \right] \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{T}_{\rm d}''}} - \right. \tag{A 4}$$
$$\left. - k \, u \, \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{T}_{\rm d}}}\cos\left(\omega \, t - \varphi_{\rm f} + \delta\right) \right\}$$

Für einen Kurzschluss mit vorangegangenem Leerlauf $(u_q = u, u_d = 0, \delta = 0 \text{ und } u \equiv i_{f0}) \text{ wird } i_f \text{ zu}$:

$$i_{\rm f} = i_{\rm f0} + u \frac{x_{\rm d} - x_{\rm d}'}{x_{\rm d}} \cdot \frac{T_{\rm f}}{T_{\rm d}'} \left[e^{-\frac{t}{T_{\rm d}'}} - (1 - k\cos\varphi_{\rm f}) e^{-\frac{t}{T_{\rm d}''}} - k e^{-\frac{t}{T_{\rm a}}}\cos(\omega t - \varphi_{\rm f}) \right]$$
(A 5)

$$\underline{i_{f}}(p) = \underline{u} (1 - \sigma_{df}) T_{f} \omega \frac{p (1 + p \mu_{D} T_{D} \omega)}{(1 + p T_{d}' \omega) (1 + p T_{d}'' \omega) \left(p + j + \frac{1}{T_{a} \omega}\right)} = \frac{Q(p)}{P(p)}$$
(A1)

S

Anhang

I. Verlauf des Feldstromes beim dreiphasigen Stosskurzschluss

Der Feldstrom erhält einen vorübergehenden Anteil $i_{\rm f} = {\rm Re}$ [*i*_f], wenn die Klemmenspannung $u = u_d + ju_q$ durch dreiphasigen Kurzschluss plötzlich auf Null geändert wird. Die Transferfunktion des komplexen Feldstrom-Zeigers is lautet im Bildbereich der modifizierten Laplace-Transformation wie folgt [5]:

 $\underline{i}_{f}(p) = (1 - \sigma_{df}) T_{f} \omega \frac{p (1 + p \mu_{D} T_{D} \omega)}{(1 + p T'_{d0} \omega) (1 + p T''_{d0} \omega)} x_{d} \underline{i}_{d}$ mit

$$\underline{i}_{d} = \underline{u} \frac{(1 + p T'_{d0} \omega) (1 + p T''_{d0} \omega)}{\left(p + j + \frac{1}{T_{a} \omega}\right) (1 + p T_{d'} \omega) (1 + p T_{d''} \omega) x_{d}}$$

Setzt man i_d in die erste Gleichung ein, so wird $i_f(p)$ zu

II. Bestimmung von *x*_c

Aus Gl. (A 5) folgt:

$$\frac{i_{\mathrm{f}\sim}}{u} = \frac{x_{\mathrm{d}} - x_{\mathrm{d}}'}{x_{\mathrm{d}}} \cdot \frac{T_{\mathrm{f}}}{T_{\mathrm{d}}'} k =$$
$$= \frac{x_{\mathrm{d}} - x_{\mathrm{d}}'}{x_{\mathrm{d}}} \cdot \frac{T_{\mathrm{f}} \mu_{\mathrm{D}} T_{\mathrm{D}}}{T_{\mathrm{d}}' T_{\mathrm{d}}''} \left[\sqrt{\frac{1 + \left(\frac{1}{\mu_{\mathrm{D}} T_{\mathrm{D}} \omega}\right)^2}{1 + \left(\frac{1}{T_{\mathrm{d}}'' \omega}\right)^2}} \right]$$

Mit der bekannten Beziehung [5]

$$\sigma_{\rm fD} T_{\rm f} T_{\rm D} = \frac{x_{\rm d}}{x_{\rm d}''} T_{\rm d}' T_{\rm d}''$$

 $T_{\rm d}'' \omega \gg 1$

und der Annahme

ergibt sich:

$$a = \frac{i_{\rm f}}{u} = \frac{x_{\rm d} - x_{\rm d}'}{x_{\rm d}''} \cdot \frac{\mu_{\rm D}}{\sigma_{\rm fD}} c$$

$$c = \sqrt{1 + \left(\frac{1}{\mu_{\rm D} T_{\rm D} \omega}\right)^2} = \left|\frac{1 + j \,\mu_{\rm D} T_{\rm D} \omega}{j \,\mu_{\rm D} T_{\rm D} \omega}\right|$$
(A 6)

Ferner gilt für x_d "

$$x_{d}'' = x_{d} \left[\mu_{d} + (1 - \mu_{d}) \frac{\mu_{f} \mu_{D}}{\sigma_{fD}} \right]$$
 (A 7)

oder mit Hilfe von $(1 - \sigma_{df}) = (1 - \mu_d)(1 - \mu_f)$:

$$x_{ ext{d}}'' = x_{ ext{d}} \left[\mu_{ ext{d}} + rac{\mu_{ ext{D}}}{\sigma_{ ext{fD}}} \left(\sigma_{ ext{df}} - \mu_{ ext{d}}
ight)
ight]$$

Setzt man $x_c = \mu_d x_d$ und $x_d' = \sigma_{df} x_d$ hier ein, so bekommt man für das Verhältnis μ_D / σ_{fD} :

$$\frac{\mu_{\rm D}}{\sigma_{\rm fD}} = \frac{x_{\rm d}'' - x_{\rm c}}{x_{\rm d}' - x_{\rm c}}$$
(A 8)

Daraus ergibt sich

$$a = \frac{x_{\rm d} - x_{\rm d}'}{x_{\rm d}''} \cdot \frac{x_{\rm d}'' - x_{\rm c}}{x_{\rm d}' - x_{\rm c}} c \tag{A 9}$$

oder nach einer Umrechnung

$$x_{d}'' - x_{c} = x_{d}'' \frac{x_{d}' - x_{d}''}{x_{d} - x_{d}' - x_{d}'' \frac{a}{c}} \cdot \frac{a}{c}$$
 (A 10)

In der Fachliteratur wird immer a/c = 1 eingesetzt. Dies ist aber nicht immer zulässig. Für die Ermittlung von x_e oder der Differenz $x_d'' - x_e$ ist also c erforderlich [Gl. (A 6)]. Mit der Annäherung [siehe Gl. (A 15)]:

$$T_{\mathrm{D}} \approx rac{x_{\mathrm{d}}'}{x_{\mathrm{d}}'' \, \sigma_{\mathrm{fD}}} \, T_{\mathrm{d}}''$$

kann man für c schreiben

$$c^2 pprox 1 + \left(rac{\sigma_{
m fD} \, x_{
m d}''}{\mu_{
m D} \, x_{
m d}' \, T_{
m d}'' \, \omega}
ight)^2$$

Setzt man hier μ_D/σ_{fD} aus Gl. (A 8) ein, so wird:

$$c^{2} \approx 1 + \left(\frac{1}{T_{d}''\omega} \cdot \frac{x_{d}''(x_{d}'-x_{c})}{x_{d}'(x_{d}''-x_{c})}\right)^{2} = \\ = 1 + \left(\frac{1}{T_{d}''\omega} \cdot \frac{c(x_{d}-x_{d}')}{ax_{d}'}\right)^{2} \\ \frac{1}{c} \approx \sqrt{1 - \left(\frac{x_{d}-x_{d}'}{ax_{d}'T_{d}''\omega}\right)^{2}}$$
(A 11)

Bei einer richtigen Messung ist $ax_d'T_d\omega > (x_d - x_d')$. Nur bei sehr grossen Turbogeneratoren oder bei zweipoligen Kurzschluss-Generatoren wird *a* so klein, dass $c = \infty$ wird. Dies bedeutet, dass x_c der subtransienten Reaktanz x_d'' gleich ist, d. h. x_{Dc} in Fig. 5b Null ist.

III. Ermittlung der Eigenzeitkonstanten $T_{\rm f}$ und $T_{\rm D}$

Folgende Gleichungen sind bekannt [5]:

$$\sigma_{\rm df} T_{\rm f} + \sigma_{\rm dD} T_{\rm D} \equiv T_{\rm d}' + T_{\rm d}'' \qquad (A \ 12)$$

$$\sigma_{\rm fD} T_{\rm D} T_{\rm f} \equiv \frac{x_{\rm d}}{x_{\rm d}''} T_{\rm d}' T_{\rm d}''$$
 (A 13)

Schreibt man die letztere Gleichung wie folgt

$$(\sigma_{\rm df} T_{\rm f}) (\sigma_{\rm dD} T_{\rm d}) = \frac{\sigma_{\rm df} \sigma_{\rm dD}}{\sigma_{\rm fD}} \cdot \frac{x_{\rm d}}{x_{\rm d}''} T_{\rm d}' T_{\rm d}''$$

kann man daraus mit Leichtigkeit $\sigma_{df}T_{f}$ gewinnen. Mit den Annäherungen

$$x_{
m d}' pprox \sigma_{
m df} \, x_{
m d}$$

$$\sqrt{(T_{d}' + T_{d}'')^{2} - 4 \frac{x_{d} \sigma_{df} \sigma_{dD}}{x_{d}'' \sigma_{fD}} T_{d}' T_{d}''} \approx \\ \approx (T_{d}' + T_{d}'') \left[1 - 2 \frac{x_{d}' \sigma_{dD}}{x_{d}'' \sigma_{fD}} \cdot \frac{T_{d}' T_{d}''}{T_{d}' + T_{d}''} \right]$$

ergibt sich

$$T_{\rm f} \approx \frac{x_{\rm d}}{x_{\rm d}'} T_{\rm d}' \left[1 - \frac{T_{\rm d}''}{T_{\rm d}'} \left(\frac{x_{\rm d}' \sigma_{\rm dD}}{x_{\rm d}'' \sigma_{\rm fD}} - 1 \right) \right] \qquad (A \ 14)$$

und aus Gl. (A 13):

$$T_{\rm D} \approx \frac{x_{\rm d}'}{x_{\rm d}'' \,\sigma_{\rm fD}} \, T_{\rm d}'' \left[1 + \frac{T_{\rm d}''}{T_{\rm d}'} \left(\frac{x_{\rm d}' \,\sigma_{\rm dD}}{x_{\rm d}'' \,\sigma_{\rm fD}} - 1 \right) \right]$$
 (A 15)

IV. Bestimmung der Reaktanzen x_{rc} , x_{fc} , x_{Dc}

Die gegenseitigen Reaktanzen x_{df} und x_{dD} zwischen Anker-Feld und Anker-Dämpfer kann man jederzeit einer beliebigen Reaktanz z. B. $x_d - x$ gleich setzen, wenn man die Feld- und Dämpfergrössen auf den Ankerkreis bezieht.

$$x_{\rm df} = x_{\rm dD} = x_{\rm d} - x \qquad (A \ 16)$$

In der Fachliteratur wird $x = x_{a\sigma}$ eingesetzt und zudem angenommen, dass $x_d - x_{a\sigma}$ der gegenseitigen Reaktanz zwischen Feld-Dämpfer gleich ist.

$$x_{\rm d} - x_{\rm a\sigma} = x_{\rm ad} = x_{\rm fD} \tag{A 17}$$

Dabei kann man mathematisch beweisen [2], dass die gegenseitige Reaktanz x_{tD} zwischen Feld und Dämpfer einen ganz bestimmten Wert hat

$$x_{\rm fD} = \frac{(x_{\rm d} - x)^2}{x_{\rm d} - x_{\rm c}}$$
 (A 18)

Aus diesem Grunde trifft man die in Gl. (A 17) gesetzte Annahme nicht. Daher gilt

$$x_{\rm fD} = (x_{\rm d} - x) + x_{\rm re}$$
 (A 19)

Aus Gl. (A 18) und Gl. (A 19) folgt:

$$x_{\rm rc} = \frac{x_{\rm d} - x}{x_{\rm d} - x_{\rm c}} (x_{\rm c} - x)$$
 (A 20)

Für x_{fe} setzt man voraus, dass die vom Anker aus gesehene Gesamtreaktanz beim Fehlen des Dämpferkreises x_d' ist

Bull. SEV 63(1972)20, 30. September

 $(r_{\rm f} = 0, r_{\rm D} = \infty)$. Benützt man für die parallele Schaltung die Bezeichnung «II», dann gilt also

$$x_{\rm d}' = x + (x_{\rm d} - x) \, \text{II} \, (x_{\rm re} + x_{\rm fe})$$
 (A 21)

 x_{d} " ist die Gesamtreaktanz mit Dämpferkreis, daher

$$x_{d}'' = x + (x_{d} - x) \operatorname{II} [x_{rc} + x_{fc} \operatorname{II} x_{Dc}]$$
 (A 22)

Aus diesen Beziehungen erhält man die Bestimmungsgleichungen (10) und (11) für x_{fc} und x_{Dc} .

Literatur

- B. Adkins: The general theory of electrical machines. London, Chapman and Hall, 1957.
 I. M. Canay: Causes of discrepancies on calculation of rotor quantities and exact equivalent diagrams of the synchronous machine. Trans. IEEE PAS 88(1969)7, p. 1114...1120.

- [3a] M. Canay: Ersatzschemata der Synchronmaschine zur Berechnung von Polradgrössen bei nichtstationären Vorgängen sowie asynchronem Anlauf. Teil I: Turbogeneratoren. Brown Boveri Mitt. 56(1969)2, S. 60, 711 Anlauf. T S. 60...71.
- S. 60.../1.
 [3b] M. Canay: Ersatzschemata der Synchronmaschine zur Vorausberechnung von Polradgrössen bei nichtstationären Vorgängen sowie asynchronem Anlauf. Teil II: Schenkelpolmaschinen. Brown Boveri Mitt. 57(1970)3, S. 135...145.
- 57(1970)3, S. 135...145.
 [4] M. Canay: Allgemeine Theorie der Synchron- und Asynchronmaschinen in der Operator-Matrix-Darstellung. Arch. Elektrotechn. 46 (1961)2, S. 83...102.
 [5] T. Laible: Die Theorie der Synchronmaschine im nichtstationären Betrieb mit Anwendungsbeispielen und unter Berücksichtigung der modernen amerikanischen Literatur. Berlin/Göttingen/Heidelberg, Springer-Verlag, 1952.
 [6] M. Canay: Ein neues Verfahren zur Bestimmung der Querachsengrössen von Synchronmaschinen. ETZ-A 86(1965)17, S. 561...568.
 [7] Y. Yu and H. A. M. Moussa: Experimental determination of exact equivalent circuit parameters of synchronous machines. Trans. IEEE PAS 90(1971)6, p. 2555...2560.

Adresse des Autors:

Dr. M. Canay, AG Brown, Boveri & Cie., 5400 Baden.