Hochauflösender optischer Positionssensor mit integrierter Signalverarbeitung

- Autor(en): Erb, K. J.
- Objekttyp: Article
- Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association Suisse des Electriciens, de l'Association des Entreprises électriques suisses

Band (Jahr): 76 (1985)

Heft 5

PDF erstellt am: 13.09.2024

Persistenter Link: https://doi.org/10.5169/seals-904573

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Hochauflösender optischer Positionssensor mit integrierter Signalverarbeitung

K.J. Erb

Der Aufbau und die Funktionsweise eines integrierten optischen Positionssensors, welcher den Photoeffekt in einer grossflächigen pn-Diode ausnutzt, werden beschrieben. Durch direkte Umwandlung des Sensorsignals in digitale Form lässt sich eine hohe Auflösung und Reproduzierbarkeit erreichen. Der Sensor und die Signalverarbeitungsschaltung sind in Bipolartechnologie realisiert, wodurch sich die Möglichkeit ergibt, beide Elemente auf demselben Substrat zu kombinieren. Als Lichtquelle kann eine gewöhnliche Leuchtdiode verwendet werden.

La conception ainsi que la performance d'un capteur de position optique integré sont présentées. Le principe physique est celui de l'effet photoélectrique d'une diode pn à grande surface. En digitalisant directement les signaux à la sortie du capteur, on obtient une haute résolution ainsi qu'une bonne reproductibilité des résultats. Le capteur et le circuit de traitement des signaux sont réalisés en technologie bipolaire. Ceci donne la possibilité de combiner ces deux éléments sur le même substrat. Comme source lumineuse, une diode LED conventionnelle peut être utilisée.

Vortrag anlässlich der Tagung «Silicon Sensors» des «IEEE Swiss Section, Chapter on Solid State Devices and Circuits», am 16. Oktober 1984 in Bern.

Adresse des Autors

Dr. K.J. Erb, Mettler Instrumente AG, 8606 Greifensee.

1. Einleitung

Bei der Mehrzahl der heute erhältlichen integrierten Sensoren muss ein erheblicher Aufwand an analoger und digitaler Elektronik betrieben werden, damit die Messgrössen von Mikroprozessoren übernommen und softwaremässig weiterverarbeitet werden können. Das Ziel des hier beschriebenen Projektes war die Entwicklung eines monolithisch integrierten optischen Positionssensors mit zugehöriger Signalverarbeitung. Das Ausgangssignal soll in digitaler Form vorliegen und mit minimalem Aufwand an einen Prozessor angeschlossen werden können.

Ein- und zweidimensionale optische Positionssensoren, die auf dem Photoeffekt basieren, sind seit längerer Zeit auf dem Markt erhältlich. Auch Ausführungen in planarer Bipolartechnologie, welche dem vorliegenden Projekt zugrunde liegen, wurden bereits ausführlich untersucht [1]. Diese Elemente bestehen grundsätzlich aus einer grossflächigen Photodiode, welche durch p-Diffusion oder Ionenimplantation auf ein n-dotiertes Substrat oder eine Epitaxialschicht erzeugt wird. Die Form der Diode ist rechtekkig, mit zwei Kontakten auf der p-Seite entlang entgegengesetzter Kanten. Ein einfallender Lichtstrahl (Fig. 1) erzeugt in der sperrpolarisierten Diode einen Photostrom, der seitwärts über die p-Schicht zu den Kontakten abfliesst. Bei homogenem Flächenwiderstand der p-Schicht teilen sich diese Ströme entsprechend dem Abstandsverhältnis des Lichteinfallspunktes zu den kontaktierten Kanten (x-Richtung). Die Verteilung ist unabhängig von der Lage des Lichteinfalls in der zu x senkrechten y-Richtung [2], weshalb ein solcher Positionssensor nur eindimensionale Änderungen erfassen kann. Zweidimensionale Positionssensoren lassen sich herstellen, indem man sowohl die p- als auch die n-Schicht (Epitaxialschicht) ausnutzt

und beide mit zueinander senkrechten Kontakten versieht.

Im vorliegenden Fall des eindimensionalen Sensors macht die Unabhängigkeit von der y-Position eine präzise Paralleljustierung des Sensors in Bewegungsrichtung unnötig. Da die Stromaufteilung von der Position des Schwerpunktes der einfallenden Lichtintensität abhängt, ist auch keine optische Fokussierung notwendig, was die Verwendung einer einfachen Lichtquelle, z.B. einer lichtemittierenden Diode, erlaubt.

Die Figur 1a zeigt schematisch den Sensoraufbau. Unter etwas vereinfachenden Annahmen kann die Anordnung durch ein Ersatzschaltbild (Fig. 1b) dargestellt werden. Es besteht aus einem Potentiometer, in dessen Schleifkontakt der Photostrom eingespeist wird. Die relative Position des Lichteinfallspunktes lässt sich ausdrücken durch:

$$X = I_1 / (I_1 + I_2) \tag{1}$$

Fig. 1 Eindimensionaler Positionssensor

b Ersatzschaltbild

Fig. 2 Blockschaltbild der Signalverarbeitung Beschreibung siehe Text

Diese Gleichung zeigt, dass eine von der Intensität des Lichteinfalls unabhängige Positionsmessung möglich ist. Ihre Auswertung könnte mit einer analogen Dividierschaltung realisiert werden. Eine solche Lösung hat allerdings den Nachteil, dass die Auflösung des Sensors infolge Drift und Rauschen unnötig reduziert wird. Aus diesem Grunde wurde eine Lösung gewählt, bei der die Ströme direkt über ein Regelsystem kompensiert werden. Dadurch lassen sich kritische analoge Signalstufen vermeiden. Abgesehen von einer quarzgesteuerten Referenzfrequenz werden keine genauigkeitsbestimmenden Präzisionselemente benötigt. Bis auf einige Kapazitäten können alle Elemente der Signalverarbeitung auf einen IC integriert werden. Das Ausgangssignal liegt in Form eines pulsdauermodulierten Binärsignals vor, was eine direkte Weiterverarbeitung durch einen Mikroprozessor ermöglicht.

2. Aufbau des Positionssensors

Die Abmessungen der Photodiode richten sich nach dem gewünschten Messbereich einerseits und der Grösse des eingestrahlten Lichtflecks anderseits. Um bei Verwendung einer Leuchtdiode ohne optische Fokussierung einen wesentlichen Anteil der Lichtenergie einzufangen, ist eine Breite von 2 bis 3 mm erforderlich. Bezüglich der Länge wurden drei verschiedene Versionen (5, 9, 13 mm) gewählt, um den Einfluss auf die Linearität und die Auflösung untersuchen zu können. Einen wesentlichen Parameter stellt der Wert des Flächenwiderstandes in der p-Schicht dar. Da für die Messung der Ströme I_1 und I_2 die beiden Kontakte der p-Schicht über Differentialverstärker-Eingänge virtuell auf gleichem Potential gehalten werden müssen (Fig. 2), ist mit einer Fehlerspannung zu rechnen, welche durch die Differenz der Eingangs-Offsetspannungen der beiden Operationsverstärker gegeben ist (s. Kap. 3) Gemäss Ersatzschaltbild (Fig. 1) resultiert daraus ein relativer Positionsfehler

$$\Delta X = U_{\rm diff} / (R I_{\rm ph}) \tag{2}$$

der umgekehrt proportional zu *R* und somit dem Flächenwiderstand der p-Schicht ist. Um einen hohen Flächenwiderstand zu erreichen, wurden zwei verschiedene Realisationsvarianten gewählt.

In der ersten Version wird eine schwach dotierte p-Schicht durch Implantation von Bor-Ionen erzeugt, ähnlich der in [1] beschriebenen Struktur. Um einen ohmschen Kontakt zu den Metallelektroden zu erhalten, wird als Übergang eine p-Diffusion (Basis-Diffusion) verwendet (Fig. 2a).

Die zweite Version wurde ausschliesslich mit Prozessen der Standard-Bipolartechnologie realisiert. Ein p-Diffusionsgebiet (Basis-Diffusion), welches üblicherweise einen Flächenwiderstand von etwa 200 Ω aufweist, wird durch eine n-Diffusion (Emitter-Diffusion) verdünnt (pinched layer), wodurch sich deren Flächenwiderstand auf einige k Ω erhöht (Fig. 3c). Die resultierenden Photoströme sind bei gleicher Beleuchtungs-

Fig. 3 Querschnitte durch den Positionssensor Ionenimplantierte Version:

a Längsschnitt

b Querschnitt

Diffundierte Version:

c Längsschnitt

d Querschnitt

Die neben n und p gesetzten – und + bezeichnen eine schwächere oder stärkere Dotierung.

intensität gegenüber der ersten Version etwas kleiner, da die Sperrschicht des pn-Übergangs tiefer liegt und dünner ist.

Die Struktur der n-Seite ist in beiden Fällen identisch. Eine vergrabene n-Schicht (Fig. 3b und 3d), welche über eine tiefe n-Diffusionsbrücke mit der Metallelektrode verbunden ist, sorgt für eine niederohmige Verbindung und somit für einen minimalen Spannungsabfall.

Wie aus den Figuren 3c und 3d ersichtlich ist, entspricht die zweite Sensorvariante einem grossflächigen npn-Transistor mit zwei Basisanschlüssen, jedoch ohne Emitterelektrode.

Die Figur 4 zeigt die Aufsicht auf ein Sensorelement. Ersichtlich ist die Struktur der Metallelektroden, insbesondere der breiten Elektroden an den Schmalseiten der p-Schicht. Die vergrabene n-Schicht wird über eine schmale, längsseitige Elektrode ver-

Fig. 4 · Aufsicht auf ein Sensorelement Grösse des Elementes: 2 mm × 5 mm helle Stellen: Metallelektroden

bunden. Alle Anschlussflächen sind im Hinblick auf eine spätere Kombination mit dem Signalverarbeitungschip auf eine Schmalseite geführt.

3. Aufbau und Funktionsweise der Signalverarbeitung

Das Blockschaltbild der Signalverarbeitungsschaltung ist in Figur 2 dargestellt. Die p-seitigen Elektrodenanschlüsse werden über die Eingänge der Operationsverstärker auf konstantem Potential U_0 gehalten. Die zwei Regler (Integratoren) R_1 und R_2 wirken so auf die gesteuerte Stromquelle I_s und den Schalter S ein, dass durch diese gleichstrommässig die Ströme I1 und I2 fliessen. Während R_1 über die angegebene Kennlinie den Wert Is der Stromquelle einregelt, bestimmt der Regler R_2 das dem Verhältnis I_1 zu I_2 entsprechende Tastverhältnis für den Schalter S mit Hilfe eines spannungsgesteuerten Pulsbreitenmodulators (Komparator und Sägezahnoszillator). Im stationären Zustand beträgt das Tastverhältnis, falls T_1 die Kontaktzeit auf Stellung 1 und T die Periodendauer bezeichnet,

$$T_1 / T = I_1 / (I_1 + I_2)$$
(3)

und entspricht damit genau dem durch Gleichung 1 definierten Positionswert:

$$X = T_1 / T \tag{4}$$

Fig. 5 Auslegung der integrierten Signalverarbeitungsschaltung Chipgrösse: 3 × 3 mm

Fig. 6 Dynamisches Verhalten der Signalverarbeitung

- X Positionswert in Funktion der Zeit
- ① Schrittantwort auf Positionsänderung $\Delta X = 0.4$
- Schrittantwort auf Änderung des Photostromes um 50%

Durch dieses Schaltungskonzept wird eine direkte Umwandlung des Messresultates in eine zeitliche Information erreicht. Ein externer 12-bit-Zähler misst die Dauer T_1 und synchronisiert beim Überlauf gleichzeitig den Sägezahnoszillator. Dadurch wird erreicht, dass der Frequenzwert des quarzgesteuerten Taktgenerators keinen Einfluss auf die Messgenauigkeit hat. Zusätzlich kann die zeitliche Diskretisation durch den Zähler in den Regelkreis einbezogen werden, wodurch sich die Möglichkeit ergibt, die Auflösung durch nachfolgende Integration im Prozessor zu erhöhen. Die Genauigkeit der Signalverarbeitung wird lediglich durch ungleiche Offsetspannungen und Eingangsströme der beiden Operationsverstärker sowie durch Streukapazitäten und Leckströme der Stromschalter beeinträchtigt.

Die Figur 5 zeigt den Aufbau der integrierten Schaltung. Durch exakte Symmetrie der Geometrie wird der Gleichlauf der Operationsverstärker-Eingänge optimiert (obere Chiphälfte). Spezielle Kompensationsschaltungen reduzieren deren Eingangsströme auf einige Nanoampere [3]. Die Stromschalter sind mit symmetrischen, ungesättigten Darlington-Transistoren realisiert, wodurch die oben erwähnten Störeinflüsse minimiert werden.

Das dynamische Verhalten der Signalverarbeitung wird in Figur 6 veranschaulicht. Da die Schaltung speziell für hohe Genauigkeit und Auflösung ausgelegt ist, ergibt sich ein relativ langsames transientes Verhalten. Schwankungen der Lichtintensität werden über einen grossen Bereich ausgeregelt.

4. Resultate und Schlussfolgerungen

Drei verschiedene Sensoren von beiden Prozessvarianten (Ionenimplantation und Diffusion) wurden zusammen mit der integrierten Schaltung in einer automatischen Messeinrichtung untersucht. Als Referenzlängenmessung diente ein kapazitiver Messfühler mit einer Auflösung von 0,1 µm und einer garantierten Genauigkeit von 1 µm. Linearität, Auflösung und Temperaturverhalten wurden aufgenommen. Die Resultate sind in Tabelle I zusammengestellt. Zwischen den beiden Prozessvarianten konnten keine signifikanten Unterschiede beobachtet werden.

Die Nichtlinearität ist erwartungsgemäss relativ gross. Sie ist eine Folge der Dotierungsschwankungen über die Fläche und tritt demzufolge bei grösseren Sensoren stärker in Erscheinung.

Tabelle I

Versuchsresultate

Struktur der aktiven Schicht	Ionenimplantierte p-Typ-Schicht			Pinched-p-Typ-Schicht		
Geometrie (mm) 3 mal	5	9	13	5	9	13
Nutzbare Länge (mm)	4	8	12	3,5	7	10
Nichtlinearität ¹) (%)	0,67	0,45	1,2	0,28	0,33	1,2
Auflösung ²)	$2,8 \cdot 10^{-5}$	$2,9 \cdot 10^{-5}$	4,0·10 ⁻⁵	$2,9 \cdot 10^{-5}$	28·10 ⁻⁵	$3,3 \cdot 10^{-5}$
Widerstand (k Ω)	3,21	5,69	8,39	23,7	44,9	58,2
Leckstrom				-		
(nA bei 2,5 V)	40	480	2680	<10	<10	<10
Temperaturkoeffizient						
(ppm/°C)	142	66	87	73	111	89

1) Maximale Abweichung von der Regressionsgeraden

²) Variationsbereich (peak-peak) bezogen auf Skalenbereich bei 200 msec Integrationszeit

Fig. 7 Kennlinie und Streubereich eines einzelnen Sensors

Aktive Schicht:	ionenimplantiert
Länge:	9 mm
Temperatur-	
variation:	0,5 °C
a	Abweichung von der Linearität
	(y-Skala: 1% des Messbereichs /
	Teilung)
b	Abweichung von einer gemittel-
	ten Charakteristik
	(y-Skala: 0,01% des Messbereichs/
	Teilung)

Wesentlich ist jedoch, dass deren Verlauf reproduzierbar ist und bei Bedarf softwaremässig kompensiert werden kann. Eine typische Kennlinie und deren Schwankungen über mehrere Messdurchläufe zeigt Figur 7.

Die Auflösung und die Reproduzierbarkeit sind durchwegs besser als 10⁻⁴. Die Temperaturabhängigkeit in der Grössenordnung von 100 ppm/°C ist ebenfalls eine Folge der Dotierungsinhomogenitäten und somit inhomogener Widerstandsschwankungen über die Sensorfläche. Im Gegensatz zur Linearitätskorrektur ist deren Kompensation mit mehr Aufwand verbunden.

Bei der Beurteilung dieser Resultate muss in Betracht gezogen werden, dass es sich um ein relativ billig herstellbares, integriertes Sensorelement han-

delt. Mögliche Anwendungsbereiche sind Distanzmessprobleme, bei denen kleine Weglängen mit hoher Auflösung erfasst werden müssen und Absolutwerte von untergeordneter Bedeutung sind.

Literatur

- D.J.W. Noorlag: Lateral-photoeffect position-sensitive detectors. Thesis of the University of Technology, Delft, 1982.
 H.J. Woltring: Single- and dual-axis lateral photodetectors of rectangular shape. IEEE Trans. ED 22(1975)8, p. 581...590.
 G. Edit, Amplificat tooknings for eventing to an analysis.
- [3] G. Erdi: Amplifier techniques for combining low noise, precision, and high-speed performance. IEEE J. Solid-State Circuits 16(1981)6, p. 653...661.