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Analysis of Multivariate Data: An Application to some
Recent Volcanics of the Central Andes

By Marisa Frangipane-Gysel *)

Abstract

The application of Principal Component and Discriminant Analysis to recent
volcanics from Central Andes illustrates a variation in chemical composition related to the
distance from the Peru-Chile trench, mainly in terms of KaO and TiOa. The relationship
between chemical composition (represented by several major oxide combinations, principal

component and discriminant scores included) and depth to the seismic zone (or
distance from the oceanic trench) is also considered and tested by means of
Standardized Multilinear Regressions.

INTRODUCTION

The tectonic setting of the Central Andes was explained by several authors,
taking into account the distribution of hypocenters beneath the continent,
in terms of the Plate tectonics theory (Jambs, 1971; Stauder, 1973; Prince
and Kulm, 1975).

According to them, the oceanic Nazca plate is subducted under the S-Ame-
rican continental plate at the Peru-Chile trench. As the cordillera trend is
strictly parallel to the oceanic trench, Prince and Kulm (1975) suggested
a very close dependence of tectonic setting from subduction.

An attempt to relate a variation in chemical composition of recent
volcanics from S-Peru to the distance from the oceanic trench and the depth to
the seismic zone was made by Leeèvre (1973). As a result of his study, a
classification of the analyses into two groups, A and B was made, mainly on
the basis of diagrams such as Na20 + K20 vs. Si02 and K20/Na20 vs. SiOa.

Group B, the more alkali-rich, is situated, according to Lefèvre (1973),
eastward with respect to A and farther from the oceanic trench, the separating
line being located at a distance of about 340 km from it.

*) Institut für Kristallographie und Pétrographie, ETH-Zentrum, CH-8092 Zürich.
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The purpose of the present study is to examine the situation in the
Central Andes in a more general way, i.e., by using multivariate methods,
taking into account also the author's own analyses from S-Peru and others
of N-Chile, Bolivia and Argentina, available from the literature, in the attempt
to give an answer to the following questions :

1. Are chemical composition (represented by the major oxides) and
geographic position related in such a way to the distance from the oceanic

trench, as to justify a division of the volcanics into two groups
2. In the affirmative case, which oxides or combination of them become of

relevance for such a classification?

3. Is there also a relationship between chemical composition and depth to the
seismic zone?

Multivariate methods consider data in which each observational unit is
characterized by several variables and evaluate changes in a large number
ofproperties simultaneously. For example, determinations of chemical elements
made on each rock specimen of a collection and arranged in tabular form,
give a set of numbers referred to as a data matrix. Usually it is difficult
to perceive the pattern of element associations by direct examination of
such a matrix, simply because of the great number of elements and analyses
involved. We need therefore, some type of quantitative method for
summarizing and analysing the information hidden in a highly multivariate table.
A number of statistical methods have as a common feature, the transformation
of the data into fewer variables that are supposed to contain the essential
information of the larger set of original observations. The overall complexity is
therefore reduced in such a way as to take advantage of inherent inter-
dependencies. This sort of data reduction becomes very useful if we want to
classify patterns in terms of a number of classes defined on a priori grounds,
as it is the case in the present study. The methods involved for the data
reduction and the classification are the Principal Component and the
Discriminant Analysis, and the results obtained from them are also taken into
account in the further investigations of the relation between chemical variation
and tectonic setting, by means of Standardized Multiple Regressions.

The many applications of these and other statistical methods to geological
problems have been summarized by several authors, among which Koch and
Link (1971), Davis (1973) and Mc Cammon (1975).

Of particular relevance for Principal Component Analysis are the works of
Lb Maître (1968), Wahlstedt and Davis (1968), Till and Colley (1973),
Saxena and Walter (1974) and Butler (1976), for Discriminant Analysis
those of Chayes (1964) and Pearce (1976) and for Multiple Regression,
those of Nielson and Stoiber (1973) and Hutchison (1975).
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COLLECTION OF DATA

Chemical analyses used in this study are of 124 recent lavas from S-Peru,
N-Chile, Bolivia and Argentina, selected from those of Lefèvre (1973),
Frangipane-Gvsel (1976), Pichler and Zeil (1969), Francis et al. (1974),
Fernandez et al. (1973) and Hörmann et al. (1973), on the basis of age and
silica content.

The volcanics are of late cenozoic age and from stratovolcanoes in the
Central Andes and should be representative of an active continental margin
(Lefèvre, 1973). The Si02 values are of 52-63%, the generally accepted range
of basaltic andésites and andésites (Nielson and Stoiber, 1973). All analyses
were recalculated to 100% after the subtraction of the volatiles. Nine variables,
i.e. Si02, A1203, Fe203, FeO, MgO, CaO, Na20, K20 and Ti02 were
considered for each rock.

In the last section of this study, the tectonic setting of each analysis is
represented by the distance between the volcanic centre the analyses are from,
and the Peru-Chile trench or the depth of the Benioff zone underneath. Three

Fig. 1. The profiles are from James (1971). The filled circles represent the approximative locations
of the analyses.
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seismic profiles from James (1971) are considered (Fig. 1) and the positions
of the nearmost volcanic centers projected on them, the distance from the
trench and the corresponding depth of the seismic zone are then obtained
directly (Frangipane-Gysel, 1976). The distances range from 170 to 500 km
and the depths from 110 to 240 km.

DATA KEDUCTION AND CLASSIFICATION

As a theoretical approach is beyond the scope of the present study and
the basic principles of matrix algebra and multivariate statistics were already
presented at an elementary level by the authors cited in the Introduction, we
will confine ourselves to a rather qualitative description of the techniques
involved, giving more emphasis to their application.

Principal Component Analysis is used in the present study, as a "search
procedure" in the hope to find underlying structure in the data, according
to point 1.) and 2.) in the Introduction. The raw data are previously
standardized and then transformed into new variables (principal components)
which are independent and account for "the greatest amount of individual
variable differences, not just of statistical variance" (Till and Colley, 1973).
The transformation is therefore based upon a correlation matrix:
standardized variables have equal weights and are independent of the magnitude
of their measured units.

Till and Colley (1973) preferred to use the correlation matrix as the
measure of similarity for chemical analyses in order to reduce the weight
of Si02 (the use of a variance-covariance matrix yields a weighting
according to the variance of each variable), Saxena and Walter (1974) consider
that errors in the further calculations should be reduced if the correlation
matrix is used.

The data are processed according to Davis (1973): from the NxN matrix
of correlation (where N is the number of oxides in each analysis), N roots,
called eigenvalues are extracted and, associate with each of them, there is an
eigenvector or latent vector.

Elements inaNxN matrix can be regarded as defining points lying on an
N-dimensional ellipsoid.

The N eigenvectors yield the principal axes of the hyperellipsoid and the
sum of the diagonal elements of the matrix and the sum of the eigenvalues
are identical and represent the total variance in the matrix, i.e. the trace
of the similarity matrix. Thus, if the variance-covariance matrix is used,
the trace will be equal to the sum of the variances of the variable, whereas

if the correlation matrix is used, the trace is equal to the number of measured
variables. If variables with small variances are eliminated, the effect will be
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more pronounced with the correlation matrix because the trace of the variance-
covariance matrix will be reduced by only a small amount (Butler, 1976).

Eigenvalues appear in the order of their magnitude: if the first few
account for an acceptable percent of the total, the remaining eigenvalues may
be discarded. The percent contribution of the original variables (oxides in our
case) to each principal component can be calculated and, if only a few of the
original variables account for most of a principal component, it may be
interpreted by considering the nature of this combination, ignoring the contribution

of less significant oxides.
The problem has then been reduced in dimensionality, from one of N

variables to one of M < N principal components. By forming the vector
product of each original analysis and the eigenvector terms, the samples can
be plotted with reference ot the M new axes (principal latent vector variation
diagram PLWD, Le Maître, 1968).

If the inspection of such diagrams shows a grouping of analyses as a function

of the corresponding oxide combination in the eigenvector term, in a
petrologically meaningful way, a classification of the analyses may be made.
This is achieved by means of the Discriminant Analysis. Once the classes are
defined, some analyses are selected from each of them and the more
significant oxides or oxide combinations, obtained from the Principal Component
Analysis, considered. Let's examine the simple case in which there are two
classes A and B. The problem is to find the linear combination of oxides
which produces the maximum difference between A and B. If we find one
or more such functions (discriminant functions) we can use them to allocate
the remaining analyses or any new analysis to one of the two classes.

A simple linear discriminant function transforms an original set of measurements

on a sample (in our case the most significant oxides selected by the
Principal Component Analysis) into a single discriminant score. That score or
transformed variable, represents the sample position along a line defined by
the linear discriminant function. In this way a multivariate problem is
reduced in dimensionality to a univariate one. Although the two classes may
overlap, a line of division can be placed between them such that most
observations from A are on one side and most observations from B on the other.
Substitution of the mid point between the multivariate means of A and B
into the discriminant function yields the discriminant index Ro, which is the
point along the discriminant function line, exactly halfway between the center
of A and B. If we calculate the discriminant function for the multivariate
means of A and B, we obtain two values Ra and Rb, which define the centers
of the two classes along the discriminant function. In fact, every observation
can be entered into the equation and its position along the discriminant function

located. The points of B that fall on the Ra side with respect to Ro and
those of A on the Rb side are misclassified by the discriminant function.
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A measure of the separation between the two classes is calculated by simply
subtracting Ra from Rb, which is called Mahalanobis or generalized distance D2.

APPLICATION TO THE CENTRAL ANDES VOLCANICS

The 124 analyses were arranged as the rows of a matrix, whose columns

are the nine oxides mentioned previously, and then processed with a

program in FORTRAN IV (Davis, 1973) to compute principal components. The
results are illustrated in Table 1 a and 2 and fig. 2.

Table 1 a. Correlation matrix

SiOa Al2Os Fe203 FeO MgO CaO Na20 KaO TiOa

Si02 1.0000
A1203 0.1740 1.0000
Fe203 -0.1450 -0.0603 1.0000
FeO -0.6592 -0.1673 -0.6003 1.0000
MgO -0.8391 -0.4183 -0.1742 0.7814 1.0000
CaO -0.8535 0.0068 -0.0727 0.6844 0.7229 1.0000
NaaO 0.2761 0.3433 0.2488 -0.4910 -0.5578 -0.3055 1.0000
K20 0.4139 -0.5075 0.2474 -0.4924 -0.3272 -0.6705 -0.0157 1.0000
Ti02 -0.6913 -0.5266 0.2962 0.3482 0.5113 0.4092 -0.1529 0.1168 1.0000

The elements of the correlation matrix (Tab. la) are the correlation coeffi-
cients r between oxides: the more their absolute values approach 1, the better
the corresponding oxides are correlated. Table 1 a shows conditions typical for
a calc-alkaline suite: a negative correlation between CaO, MgO, FeO and Si02
and a positive one among MgO, FeO and CaO. As percentages (and closed

data in general) are subject to the restriction that the sum of the variables
measured on a given observation is a constant for all observations, the
correlation coefficients were tested according to the Chayes-Kruskal test (Chayes,
1971) and the calculations performed with a program written by the author
FkA X GIPANE -G YS EL, 1976).

This test involves determining the means and variances of the hypotetical
open matrix X. The means and variances in X are such that closure to
produce Y results in the means and variances of Y being equal to those in the
observed data matrix. The correlations computed from the entries in X are
zero. The closure of X to produce Y results in nonzero correlations in Y,
entirely due to closure. These are used as null values against which to test
the observed correlations of Table 1 a. The variance of a variable is positive
by definition, but negative open variances may occur in the analysis of closed

chemical data.
A summary of the results is given in Table lb. The hypothetical open

variances are all positive (negative variances are considered significant if
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Fig. 2. PLWD diagrams for the first three eigenvectors which represent 46.58, 22.68 and 16.55%
of the trace (Table 2). The coordinates of the points are given by linear combinations of the
oxides with the coefficients of the principal axes matrix (Table 2): Si02, MgO, FeO and CaO
take on important loadings on the first eigenvector, A1203, Ti02 and KaO on the second and
Fe203 on the third. The Coropuna analyses are from I'ka\cll'AnE-(iYsiàl (1976). A and B

correspond to the two groups of the Discriminant Analysis.
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Table lb
Si02 Ala03 Fe203 FeO MnO MgO CaO Na20 k2o TiOa PA

Mean 59.9 16.6 3.3 3.0 0.1 3.5 5.7 3.9 2.7 1.0 0.4
Variance 9 0.81 1.44 1.96 - 2.25 1.0 0.25 0.36 0.16 0.04
% Variance 52 4.7 8.3 11.3 - 13.0 5.8 1.50 2.1 0.9 0.23
St. dev. 3.0 0.9 1.2 1.4 - 1.5 1.0 0.5 0.6 0.4 0.2
Hypothetical open
variance 41.97 -0.9 1.41 1.91 0.001 2.48 0.95 0.16 0.40 0.13 0.03
% open variance 84.9 - 2.9 3.9 - 5.02 1.92 0.32 0.8 0.26 0.06

Table 2

Eigenvector l 2 3 4

Eigenvalue 4.1925 2.0414 1.4901 0.6186
Percent of total contribution per eigenvalue 46.58 22.68 16.55 6.87
Cumulative percent 46.58 69.27 85.82 92.7

Principal axes matrix
SiOa 0.4397 0.0762 -0.3121 0.0020
TiOa -0.2870 -0.4340 0.2365 0.3346
A1203 0.1416 0.5584 0.2902 -0.2008
Fe203 0.1040 -0.3634 0.6052 -0.4443
FeO -0.4277 0.1708 -0.2496 -0.2619
MgO -0.4560 -0.0865 -0.0782 -0.0715
CaO -0.4251 0.1620 0.2424 -0.1079
NaaO 0.2601 0.1076 0.4568 0.7509
k2o 0.2328 -0.5363 -0.2456 0.0345

less than —1.0, Butler, 1975). The correlations in Y are all very small and
near to zero.

The apparent absence of closure effects may be the result of mixing two
populations (Davis, pers. comm.).

The hypothesis of a significant correlation between variables, only due to
the closure, was rejected. The four first eigenvetors describe 92.7% of the total
variance of the matrix (Tab. 2) so that the remaining five may be neglected
without a significant loss of information. The influence of the original variables
is represented by the principal axes matrix (Tab. 2) : Si02, MgO, FeO and CaO
take on important loadings on the first eigenvector, A1203, Ti02 and K20
on the second and Fe203 and Na20 on the third and fourth.

The first eigenvector defines the direction in N-space along which there is
the maximum amount of "spread" in the distribution. The second
eigenvector, that of maximum "spread" perpendicular to the first, the third that
perpendicular to the first and second and so on. The diagrams (fig. 2) may be
interpreted as variation diagrams, where the variables on the three axes are
linear combinations of the above mentioned oxides. The position of an
analysis along the first eigenvector is, therefore, the best possible indication of
its position within the distribution or differentiation trend (Lb Maître, 1968,
and Butler, 1976). The inspection of fig. 2 tells us that the differentiation
trend is illustrated by a linear combination mainly of Si02, MgO, FeO and CaO
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and is independent from the geographic position of the analyses. More in-
tersting is the fact that the analyses are roughly divided into two groups
along the second eigenvector, which enables us the choice of A1203, Ti02 and
K20 as the oxides significant for the Discriminant Analysis.

Of relevance for the last section of this study is the correspondence between
the location of the analyses along the second eigenvector and their provenience

(fig. 2).
The two classes in the Discriminant Analysis were chosen according to

Lefbvre (1973), group A being separated from B along a line situated about
340 km eastward from the Peru-Chile trench.

To calculate the discriminant functions, 33 samples from S-Peru were
selected for A and 15 analyses from S-Peru and 10 from Argentina for
group B. Means and standard deviations are given in Table 3.

The most effective discriminant functions are listed in Table 4, Ra, Rb, Ro
and the distances, in Table 5. The significance of the four functions were
tested according to Davis (1973) and the null hypothesis that the
multivariate means of A and B are equal, rejected at the 99% level.

The normality of the distribution of A1203, K20 and TiOa in A and B (a

Table 3

Group A Group B
(33 analyses) (25 analyses)

Standard Standard
Mean deviation Mean deviation

sio2 60.4 1.97 57.1 3.56
TiOa 0.85 0.13 1.5 0.46
A1203 16.9 0.60 15.7 0.71
Fe203 3.6 0.72 3.8 1.7
FeO 2.6 0.66 3.5 1.9
MnO 0.1 0.02 0.12 0.03
MgO 2.9 0.67 4.8 1.99
CaO 5.5 0.78 6.0 1.26
NaaO 4.0 0.28 3.6 0.52
k2o 2.6 0.47 3.1 0.69
p2O5 0.32 0.05 0.59 0.25

99.77 99.91

Table 4. Coefficients of the discriminant functions

I R 1.3884 A1203-1.2728 K20-5.6413 Ti02
II R 1.9972 A1203-4.8897 TiOa
III R =-1.9515 K20 —7.0302 Ti02
IV R =-6.7449 Ti02

Table 5. Mahalanobis distance

Ra Rb Ro Ra—Rt,
I 15.44 9.20 12.32 6.24
II 29.72 23.89 26.81 5.83

III -11.07 -16.81 -13.94 5.74
IV - 5.74 -10.23 - 7.98 4.5
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Fig. 3 and 4. Plot of the PCA scores (eigenvector 2 vs. eigenvector 1) for group A and B.

necessary requisite for the application of the Discriminant Analysis) was
tested by means of the Chi-square and the Kolmogorov-Smirnov tests and the
hypotesis accepted at the a 0.05 level (Frangipane-Gysel, 1976). The latter
test, performed to compare the distributions of the oxides in the two groups,
demonstrated that only A1203 belongs to the same population in A and B.

The contributions of the oxides to the discriminant functions are listed in
Table 6.

When the four functions are applied to the remaining analyses, the most
effective results discriminant III (KaO and TiOa). A reason for considering
the two oxides alone is that A1203 is correlated with K20 and TiOa (r —0.51
and —0.53, Table 1), while the latter two are independent (r 0.12).

Table 6. Contribution (%) to the discriminant Efficiency (%)
A1203 k2o TiOa

I 28.65 11.03 60.32 89.4
II 44.08 - 55.92 92.4

III - 18.37 81.63 95.5
IV - - 100.00 84.8
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As Davis (1973) pointed out, if two or more variables in a discriminant
function are not independent, their interaction may contribute to the distance
D2 to a greater extent than suggested by the values of Table 6. The results
obtained insofar may be summarized as follows :

The number of variables is reduced from N 9 oxides to M 4 eigenvectors.
The calcalkaline characteristic of the rocks, already seen on diagrams such

as A FM or K20 vs. Si02 (Era xgi pane-Gysel, 1976) is supported by the
Principal Component Analysis.

Eigenvector 2 isolates KaO, Ti02 and A1203 as the more significant to
define a chemical variation among the analyses. A correspondence with areal
distribution is confirmed by the Discriminant Analysis which considers also the
increase of Ti02 and K20 with the distance from the Peru-Chile trench.

PCA analysis may be performed also on A and B separately (see fig. 3 and 4) :

the purpose is once more to illustrate eventual structures in the groups and
to compare the results with the previous PCA :

Group A (Table 6a): K20 shows a better correlation with Si02 (r 0.76)
and CaO (r —0.81) if compared with Table 1.
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Table 6 a. Correlation matrix for group A

SiO A1203 Fe203 EeO MgO CaO Xa20 K2O

Si02 1.0000
ai2o3 -0.3523 1.0000
Fe203 -0.1125 0.0227 1.0000
EeO -0.6573 0.1521 -0.6238 1.0000
MgO -0.7563 -0.1335 -0.1871 0.7295 1.0000
CaO -0.9217 0.3079 -0.0346 0.6883 0.7636 1.0000
NaaO 0.1087 0.1838 0.1162 -0.2582 -0.4463 -0.2601 1.0000
k2o 0.7641 -0.5035 0.1308 -0.6603 -0.6126 -0.8119 0.0371 1.0000
TiOs -0.5421 -0.0266 0.0936 0.3380 0.3248 0.4709 0.0529 -0.3022

TiO,

1.0000

Group B (Table 6b): Na20 and K20 show slight better correlations with
FeO as in Table 1.

Table 6b. Correlation matrix for group B

SiO Ai203 -6 e2C3 FeU MgO CaO Na20 k2o
Si02 1.0000
A1203 0.4671 1.0000
Fe203 -0.0871 -0.0041 1.0000
FeO -0.5767 -0.3225 -0.3223 1.0000
MgO -0.8532 -0.3975 -0.3446 0.7990 1.0000
CaO -0.8564 -0.4398 -0.1686 0.6871 0.7756 1.0000
Na20 0.2237 0.2163 0.6435 -0.7267 -0.5510 -0.3279 1.0000
k2o 0.4885 -0.1379 0.3741 -0.6763 -0.5784 -0.6668 0.2977 1.0000
TiOa -0.6885 -0.6509 0.4164 0.1683 0.3288 0.4553 0.1387 0.0063

'liO,

1.0000

Table 6 c illustrates the eigenvectors and the principal axes matrix for the
two groups.

Table 6 c

Group A
% of total

Eigv. Eigval. contribution
4.3710
1.5979
1.2666
0.9203
0.4862

48.5672
17.7549
14.0736
10.2261
5.4026

cumulative
°//o

48.5672
66.3220
80.3957
90.6219
96.0243

Eigv. Eigval.
1 4.5910
2 2.3107
3 1.1100
4 0.3947

Principal axes matrix
Group A

Eigenvector Eigenvector

Group B
% of total

contribution
51.0116
25.6748
12.3330
4.3854

Group B

cumulative
°//o

51.0116
76.6863
89.0193
93.4043

1 2 3 4 5 1 2 3 4

SiO, 0.4409 -0.2157 0.1515 0.0290 -0.1043 0.3922 -0.3005 -0.1863 0.2768
ai2o -0.1411 0.4953 0.5041 -0.3291 -0.4107 0.2276 -0.3356 0.5974 -0.3372
Fe20 0.1000 0.4976 -0.5919 -0.3207 0.1361 0.1974 0.5240 0.2525 -0.4418
FeO -0.4052 -0.2695 0.2604 0.1933 -0.0262 -0.4242 -0.2235 -0.0923 0.1907
MgO -0.4040 -0.2688 -0.2177 -0.0712 0.3729 -0.4329 0.0064 0.0367 -0.3619
CaO -0.4515 0.0959 -0.0923 -0.1131 0.0293 -0.4142 0.1311 0.2114 0.1444
Na20 0.1300 0.4880 0.2495 0.5922 0.5376 0.2822 0.3421 0.3924 0.5660
k2o 0.4097 -0.1973 -0.2085 0.1053 -0.2022 0.3148 0.1990 -0.5700 -0.2829
TiO, -0.2443 0.1714 -0.3783 0.6091 -0.5757 -0.1942 0.5465 -0.1049 0.1643
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Group A : five eigenvectors explain 96.02 of the total variance in the
similarity matrix and the contributions of Na20, K20 and Ti02 to eigenvector II
are larger in Table 2 and 6 c, respectively.

Group B : four eigenvectors explain 93.4 of the total variance and the
contribution of K20 to the second eigenvector is larger in Table 2. The PCA
scores plots of fig. 3 shows a separation of the Peru and Argentina analyses
in group B, along the second eigenvector (i.e. as a function, mainly of Ti02
and Fe203). The Chayes-Kruskal test was possible for group A only, because

the open variance of A1203 in group B was significantly negative — 1.84).
The hypothesis of correlations due to closure was rejected for group A.

DEPENDENCE OF CHEMICAL VARIATION ON TECTONIC SETTING BY MEANS
OF A STANDARDIZED MULTILINEAR REGRESSION

An attempt to test if the chemical variation, illustrated in the previous
section, may also be related to the tectonic setting (see Collection of data) is

made, according to 3.) in the Introduction, by means of several Standardized
Multilinear Regressions (Davis, 1973). Some of the chemical parameters of
Table 7 should illustrate a relationship between the characteristic and tectonic
setting of a magma :

(Na20 +K20)/A1203 combined with Si02 gives informations about the alkali
contribution of the mantle to the parent magma (Mytashiro, 1974) r
(A1203 —Na20)/Ti02 indicates the difference between orogenic and cratonic
andésites (Rittmann, 1973) and K20 together with Si02 should be related to
the depth of the seismic zone (Nielson and Stoiber, 1973).

The coefficient r is a measure of the linear correlation between the
dependent variable and the independent ones. Only values above 0.48 are
considered satisfactory according to Nielson and Stoiber (1973). The significance
of r is the probability at which the hypothesis of null correlation may be

rejected and the percentage of goodness of fit is represented by r2 X 100.

Some linear relationships are illustrated in Table 8. The best correlations
are obtained when r is considered together with K20.

Eigenvector 2 is correlated with depth and distance in profile S-3 and S-5.

If the correlations of K20 as a function of Si02 and depth or distance are

compared with that of eigenvector 2 as a function of depth or distance,

r is about the same in the two cases, for profile S-3 and S-5 but the
eigenvector shows the advantage of a steeper regression line and a bidimensional
representation.

It is often of interest to measure the correlation between a dependent
variable and one particular independent variable when the effects of all other
variables are removed.
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Table 8. Linear regression Y a + 2&t
i — l

N represents the first column in Table 7

Coefficients
N n Variables S-3 S-4 S-5

2 2 y k2o a -6.07 -8.2 -3.8
Xi Si02 bi 0.13 0.17 0.08
x2 depth b2 — 0.01 0.004 0.02

7 3 Y =T a -62.5 -61.9 -31.9
Xj — Si02 bi 1.44 1.51 0.85
x2 K20 b2 -4.48 -6.07 -1.14
x3 depth 0.02 0.01 -0.03

10 2 Y eigenvector 2 a 2.71 1.1 4.1
x, eigenvector 1 bi 0.02 0.16 0.14
x2 depth b2 -0.03 -0.01 -0.04

11 1 Y eigenvector 2 a 2.75 2.09 4.37
Xj depth bi -0.02 -0.01 -0.04

13 2 Y =K20 a -6.48 -8.6 -5.55
xt Si02 b1 0.13 0.17 0.11
x2 distance b2 0.005 0.002 0.006

16 1 Y eigenvector 2 a — 3.6 2.4 3.7
Xj distance bi -0.01 -0.004 -0.01

Hatheeton and Dickinson (1969) used variation diagrams for individual
volcanoes in order to obtain a K20 value at specific Si02 values (55 and
60%) to be related with the depth of the Benioff zone.

The partial correlation analysis, preferred in this paper, is an excellent
technique for understanding and clarifying relationships among variables.

Suppose that compositional variables a and b are positively correlated
and b, in turn is positively correlated with c (for example, depth of the
Benioff zone), the question is, wether the amount of a expectable at some
particular b value is still correlated with depth. Another example of partial
correlation is the uncovering of spurious relationships : the correlation between
a and c results spurious if a varies along with some other variable b, which is
indeed the true predictor of c. If the effects of b are controlled (b held
constant), a no longer varies with c.

Partial correlation analysis may also be useful to locate relationships where
none appear to exist. Variable a shows no relationship to c because a is
negatively related to b, which is positively related to c. Hence a is positively
related to c when one controls the effects of b.

The partial correlation coefficients for three variables (Table 10) are
calculated from the correlation coefficients of Table 9, according to the following
equation :

_ rac — rab rbc
rac-b — „^(l-rtbKl-ry
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Table 9

a b

KaO Si02
k2o distance
k2o depth
SiOa distance
SiOa depth
SiOa K20+Na20
T Si02
K20+Na20 depth
T depth
T k2o
(K20+Na20)/Al203 Si02
(K20+Na20)/Al203 depth
eigenvector 2 eigenvector 1

eigenvector 2 distance
eigenvector 2 depth
eigenvector 1 depth
eigenvector 1 distance
Na20 K20
NaaO Si02
Na20 depth

S-3 S-4 S-5

0.36 0.86 0.27
0.39 0.42 0.48
0.38 0.45 0.47

-0.4 0.27 -0.3
-0.4 0.28 -0.28

0.44 0.8 0.37
0.64 0.48 0.82
0.16 -0.11 0.38

-0.42 -0.003 -0.47
-0.2 0.07 -0.06

0.26 0.71 0.08
0.24 — 0.195 0.5
0.22 -0.36 0.39

-0.63 -0.22 -0.69
-0.63 -0.28 -0.58
-0.3 0.1 -0.37
-0.32 -0.1 -0.3
-0.15 -0.12 -0.59

0.2 0.13 0.07
-0.38 — 0.74 -0.24

Table 10

rac-b rbc-a
a b c S-3 S-4 S-5 S-3 S-4 S-5

k2o SiOa depth 0.61 0.43 0.59 -0.62 -0.23 -0.48
k2o Si02 distance 0.62 0.38 0.61 -0.62 -0.20 -0.51
Na20 + K20 Si02 depth 0.41 -0.58 0.54 -0.53 0.68 -0.49
T k2O depth -0.38 -0.04 -0.5 0.33 0.45 0.5
(Na20+K20)/Al203 Si02 depth 0.39 — 0.58 0.55 -0.49 0.61 -0.37
eigenv. 2 eigenv. 1 distance -0.61 -0.2 -0.64 -0.21 0.02 -0.15
eigenv. 2 eigenv. 1 depth -0.61 -0.34 -0.53 -0.24 -0.22 -0.10
k2o Na20 depth 0.35 0.54 0.42 -0.35 -0.77 0.05
NaaO SiO, depth -0.33 -0.82 -0.23 -0.36 0.57 -0.27
T Si02 depth -0.23 -0.29 -0.44 -0.19 0.38 0.21

where rac.b is the coefficient of partial correlation between a and c when b
is kept constant and rac, rat>, rbC are the corresponding correlation coefficients

between variables.
If four variables are considered (Table 11), the above equation takes the

form :

_ rad-c ~rab-c rbd-c
ad'bC_ /U-rtb-cXl-i-Lne)'

where raci.bc refers to the correlation between a and d, when b and c are
held constant.

The partial correlation coefficients listed in Table 10 and 11 are compared
with the correlation coefficients of Table 9 to evaluate the mutual influence of
the variables involved. The effects of some compositional variables on the cor-
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relations between other compositional variables and depth of the Benioff zone
may be summarized as follows:

a K20, b=Si02, c depth.

ra.h is always positive, if Si02 is held constant, the correlation improves
in S-3 and S-5 but is not affected in S-4.

The situation in S-3 and S-5 may be explained taking into account the fact
that a is positively correlated with c and b, while b is negatively
correlated with c. Profile S-4 behaves in a different way: rac and rac.b are almost
equal because b is weakly (and positively) correlated with c.

a Na20 +K20 (or [Na20+K20]/A1203), b=Si02, c depth.

The situation in profile S-3 and S-5 is very similar to the above case. The
negative correlation in S-4 improves greatly (from Table 9 to Table 10) if b is
held constant, because of the strong positive value of rat,.

a eigenvector 2, b eigenvector 1, c depth.

Eigenvector 2 is negatively correlated with depth and the correlation
coefficients are almost not affected at constant b.

a t, b Si02, c depth.

In profile S-3 and S-5, a is strongly correlated with b, which is negatively
correlated with c, if, therefore, b is held constant, rac.b results smaller than
rac. The situation is reversed in S-4, where a weak negative correlation results
only if b is held constant (rac is almost zero).

The results of partial correlation for four variables are summarized in
Table 11.

Table 11

Tad-be *"bdac
S-3 S-4 S-5 S-3 S-4 S-5

KaO NaaO Si02 depth 0.58 0.10 0.59 —0.24 -0.78 0.23
K20 t Si02 depth 0.61 0.34 0.47 0.21 0.07 —0.20

The correlations between K20 and depth improves or remains constant
(for S-3 and S-5) with respect to Table 9 if Si02 and NaaO or t are held
constant simultaneously, while the reverse effect may be seen for profile S-4.

The regressions of Table 7 are able to explain only 60-80% of the total
variation of chemical characteristic as a function of the tectonic setting,
there are certainly other factors involved, such as magma inhomogeneities
at the origin and/or due to contamination during its rise, or errors in the
location or accuracy of the analyses.
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SUMMARY AND CONCLUSIONS

The present study illustrates the application of some statistical methods
to the recent volcanics of the Central Andes.

Ti02 and K20 are isolated as the most effective oxides to define a chemical
variation associated with the areal distribution of the analyses.

The increase in K20 and Ti02 eastward from the oceanic trench is related
to the increasing depth to the underlying seismic zone. Should the parental
magmas be more or less directly related with the depth of the subduction
zone, then the increase in K20 could be explained by the progressive breakdown

of phlogopite from a source situated within a subducted portion of
the upper mantle (Beswick, 1976). Experimental data on titan-phlogopite
(Forbes and Flower, 1974) show it to be stable to substantially higher
temperatures than normal phlogopite and breakdown of this phase during
melting at depth (more than 150 km) on subducted slabs is believed to be

responsible for the concomitant increase in K and Ti observed in magmas
erupted during orogenic volcanism (Forbes and Flower, 1974).

The advantage of multivariate data reduction becomes apparent in the
present application and may be recomended to the treatment of many problems.

When applying the scheme proposed here, care should be taken to test the
data for normality and, if necessary, for closure. More details about the
data properties required to apply the multivariate methods of this study
are to be found in Davis (1973), Pearce (1976), Le Maître (1968) and
Chayes (1964).

As for the multilinear regressions, a partial correlation approach may be
useful to investigate the mutual effects on the involved variables.

The rather cumbersome calculations are performed easily and quickly by
the computer and the only problem is to select the input data and evaluate
the results in a geologically meaningful way.
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