Zeitschrift:	Schweizerische mineralogische und petrographische Mitteilungen = Bulletin suisse de minéralogie et pétrographie
Band:	74 (1994)
Heft:	2
Artikel:	La microspectrométrie Raman des grenats X3Y2Z3O12 : II. La série alumineuse naturelle pyrope-almandin-spessartite = Raman microspectrometry of garnets X3Y2Z3O12 : II. The natural aluminian series pyrope-almandine-spessartine
Autor:	Pinet, Michèle / Smith, David C.
DOI:	https://doi.org/10.5169/seals-56339

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 09.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

La microspectrométrie Raman des grenats $X_3Y_2Z_3O_{12}$: II. La série alumineuse naturelle pyrope-almandin-spessartite

Raman microspectrometry of garnets $X_3Y_2Z_3O_{12}$: II. The natural aluminian series pyrope-almandine-spessartine

par Michèle Pinet¹ et David C. Smith¹

Abstract

Following article I (PINET et SMITH, 1993) which presented data on natural calcic garnets, the Raman spectra of fiftytwo natural aluminian garnets along the series pyrope-almandine and almandine-spessartine are compared with each other and with grossular which is simultaneously aluminian and calcic. Almandine and pyrope yield respectively the strongest and weakest spectra of all these garnets. For most of the twelve principal bands and numerous weak bands or shoulders identified amongst the twenty-five bands theoretically predicted, the wavenumber positions reveal quasi-linear trends by following step by step the variation in chemical composition. Only ten of the intrapolations between the end-members proposed by HOFMEISTER and CHOPELAS (1991) are correct, the others are definitely incorrect or leave uncertainties. There are thus several big problems in establishing the correspondance of Raman spectra between different compositions, but if our "naturalist" data do not suffice to clarify everything, at least they refute several hypotheses based uniquely on theoretical studies. Three bands (X, Xa, Xb) are considered to be "chemical markers" of Ca²⁺ since they only manifest themselves in the presence of Ca²⁺, as is the case of band XIV*Ca already recognized for calcic garnets. The majority of the detected trends show the end-member sequence which is the inverse of that of the ionic radius of the divalent cations X^{2+} situated in the dodecahedra, which are the only variables in this system; hence this physico-chemical parameter seems to influence rather directly the crystallography of the tetrahedra ZO_4 which are supposed to be responsible for the existence of most of the Raman bands. The atomic masses of the divalent cations do not show such a relation. The wavenumber of a Raman band displays a good correlation with the unit cell size only when the former is also correlated with the ionic radius.

Keywords: Raman spectrometry, garnets, pyrope, almandine, spessartine, grossular.

Résumé

Suite à l'article I (PINET et SMITH, 1993) qui a présenté les grenats calciques naturels, les spectres Raman de cinquante-deux grenats alumineux naturels des séries pyrope-almandin et almandin-spessartite sont comparés entreeux et au grossulaire, grenat à la fois alumineux et calcique. Les pôles Alm et Pyr fournissent respectivement le spectre le plus intense et le plus faible de tous ces grenats. Pour la plupart de douze bandes principales et de nombreuses faibles bandes ou épaulements répertoriés sur les vingt-cinq théoriquement prévues, les positions en nombre d'onde révèlent des tendances quasi-linéaires, en suivant pas à pas la variation en composition chimique. Seulement dix des intrapolations entre les pôles proposées par HOFMEISTER and CHOPELAS (1991) sont confirmées, les autres sont définitivement erronées ou laissent des incertitudes. Il existe donc de gros problèmes de correspondance de spectres Raman entre compositions différentes, mais si nos données «naturalistes» ne suffisent pas à les éclaircir complètement, au moins elles démentent plusieurs hypothèses basées uniquement sur les études théoriques. Trois bandes (X, Xa, Xb) sont considérées comme des «marqueurs chimiques» du Ca²⁺ car elles ne se manifestent qu'en présence du Ca²⁺, comme c'est le cas de la bande XIV^{*Ca} déjà reconnue pour les grenats calciques. La majorité des tendances décelées entre les pôles montrent une séquence inverse de celle du rayon ionique des cations divalents X²⁺ situés dans les sites dodécaédriques de la structure grenat, seules variables de ce système; ainsi ce

¹ Laboratoire de Minéralogie, Muséum National d'Histoire Naturelle, 61, rue de Buffon, F-75005 Paris, France.

paramètre physico-chimique semble influencer de façon assez directe la cristallographie des tétraèdres ZO₄ censés être à l'origine de la plupart des bandes Raman. Les masses atomiques des cations divalents ne montrent pas une telle relation. Le nombre d'onde d'une bande Raman est parfois en bonne corrélation avec le paramètre de la maille mais seulement quand ce premier est aussi corrélé avec le rayon ionique.

1. Introduction

L'influence des substitutions isovalentes des cations trivalents (Y^{3+}) dans les sites octaédriques de quarante grenats calciques naturels des séries Ouv-Gro (ouvarovite-grossulaire) et Gro-And (grossulaire-andradite) a été précédemment suivie en microspectrométrie Raman (l'article I: PINET et SMITH, 1993). Dans ce deuxième article, l'influence des substitutions isovalentes des cations divalents (X^{2+}) situés dans les sites dodécaédriques (Fig. 1) de cinquante-deux grenats alumineux naturels est examinée en comparant les spectres Raman des séries Pyr-Alm (pyrope-almandin) et Alm-Spe (almandin-spessartite), et un Gro (grossulaire) qui est à la fois un grenat alumineux et calcique.

Afin d'éviter des répétitions, cet article II a été rédigé de *façon identique* à l'article I. Ainsi les méthodes d'analyse (microsonde électronique et microsonde Raman), de descriptions ou d'interprétation (tableaux et dessins), ainsi que les citations et la bibliographie des travaux sur la spectrométrie Raman des grenats, ne sont pas reprises ici.

Il convient cependant de rappeler les objectifs principaux de ce travail qui peuvent être résumés comme suit.

Fig. 1 Portion de la structure du grenat $X_3Y_2Z_3O_{12}$. Chaque oxygène est lié à un tétraèdre ZO_4 , à un octaèdre YO_6 et à deux dodécaèdres XO_8 . Comparés au volume de l'oxygène les volumes de Si⁴⁺, Al³⁺ et Mg²⁺ sont représentés respectivement en noir, ponctué et hachuré, le tout avec la même échelle et les mêmes motifs que leurs polyèdres respectifs.

1. Observer les glissements en nombre d'onde des bandes Raman des grenats quand la composition chimique change le long des joints quasi-binaires Pyr-Alm et Alm-Spe en gardant une *approche «naturaliste»* (observer d'abord, invoquer des hypothèses ensuite).

2. Chercher à établir des tendances, linéaires ou autres, entre les pôles chimiques pour chaque bande Raman observée en suivant pas à pas les variations spectrales et chimiques sur des séries les plus continues disponibles afin d'éviter au maximum des intrapolations risquées.

3. Utiliser ces tendances pour confirmer ou infirmer les correspondances proposées par intrapolation entre les bandes Raman des pôles presque purs par HOFMEISTER et CHOPELAS (1991), plusieurs de leurs correspondances pour les grenats calciques ayant été mises en doute dans notre article I (PINET et SMITH, 1993).

4. *Réaliser* une base de données plus fiable afin de pouvoir être exploitée pour *l'analyse chimique semi-quantitative non-destructive* des grenats dans le système (Ca,Mg,Fe²⁺,Mn)₃(Al,Fe³⁺, Cr)₂Si₃O₁₂ suivant la méthode déjà publié pour des systèmes ternaires (BOYER et al., 1988) et quaternaires (SMITH et PINET, 1989), méthode qui peut être étendue à d'autres systèmes chimiques minéraux.

5. Rechercher des corrélations entre les variations spectrales Raman et *les variations cristallochimiques* des grenats alumineux dont le rayon ionique et la masse atomique des cations dans les sites X^{2+} varient tandis que la charge reste constante.

2. Sources et compositions chimiques des grenats alumineux naturels étudiés en Raman

Le tableau 1 fournit:

 les localisations géographiques des cinquante-deux grenats étudiés;

– les proportions dans les solutions solides des pôles Pyr, Alm, Spe, Gro, And et Ouv qui permettent de situer ces échantillons dans un diagramme triangulaire Pyr-Alm-Spe (Fig. 2) dans lequel les pourcentages en solutions solides de grenats calciques (Gro + Ouv + And) sont distingués par des symboles différents;

– les deux paramètres chimiques utilisés comme abscisses pour les figures 4, 6, 8 et 9; et

Ech	. Co	ll. Localisation géographique et	Con	nosition	en mol	0/			Dorom	ah ina	M-311-	(\$)
		n° de collection	Pyr	Alm	Spe	⁷⁰ Gro	And	Ouv	fMg	fMn	Maille diff.	(A) mono.
A02	2 V	Ceylan	16 10	74 73	0.87	8 30			0.822		11 552	
A03	8 V	Roscoff, Sierk, Morbihan, France	2.99	68 55	25.03	3 43			0,025	0 732	11,555	
A04	V V	Tyrol, 2501A	10.72	78.47	9.07	1 46		0.28	0.806	0,752	11,539	
A05	i V	Collobrières, Var, France, 6956	2.75	95.74	0.03	0.93	0.55	0,20	0,090	0,890	11,343	
A06	i V	Tunnel de Fix, Haute Loire, France	8.13	74.12	16.06	1.69	0,55		0,972	0 877	11,537	
A07	V	Collobrières, Var, France, 735A	2.29	95.80	0.06	1 84			0,901	0,822	11,557	11 522
A08	V	Groix, Morbihan, France, 10215 bis	5,71	63.78	2.12	27.97		0.42	0.918		11,559	11,332
A10	V	Prileps, Serbie, Yougoslavie	17.79	78.83	0.43	2.95		0,42	0,916		11,023	
A11	V	Tyrol, Suisse	6.43	89.32	0.69	3 44	0.12		0,010		11,552	
A12	V	Velusina, Macédoine, Yougoslavie	16.71	79.63	1.54	2.05	0.03	0.05	0,955		11,547	
A13	V	Portugal	8.35	80.37	8.11	3 17	0,00	0,05	0,020	0 008	11,550	
A14	V	Pyrénées, France, C4.341	12.67	68.50	16.30	2 43		0.10	0,900	0,908	11,541	
A15	V	Bohême	33.45	62.02	1.90	1 30	0.82	0,10	0,044	0,000	11,549	11 512
A16	\mathbf{V}	Brésil	15.95	64.01	6.38	13 56	0.06	0,50	0,050		11,517	11,515
A17	V	Ngoï Hutt, Tachai, Mer Rouge, Tonkin	23.31	68.05	2,53	5.85	0,00	0,00	0,000		11,575	
A18	V	Lac Kabasha, Congo Belge	5.04	83.78	2,00	11 19		0,27	0,745		11,541	
A19	V	Ile du Levant, Hyères, Var, France	10.28	82,27	1 25	6.20			0,945		11,571	
A20	V	Caladroy, Pyr. orient., France, 2448A	2.67	70 77	25.93	0,20		0.17	0,009	0 722	11,550	
I05	М	Isoki, Madagascar, 147.33	2,01	41.66	57 64	0.37	0.33	0,17		0,752	11,550	
K06	S	Liset, Norvège	20.08	49 13	57,01	30,57	0.08		0.710	0,419		
K20	S	Liset, Norvège	3.04	40.98	9.83	43.85	2 30		0,710	0.807		
K36	S	Liset, Norvège	30.09	42,89	1.07	24.98	0.07		0 599	0,007		
P02	V	Bohême, 1251P	75.00	13.96	0.74	0.90	0.84	8 56	0,388		11 542	
P03	V	Merowitz, Bohême, 1606P	75.93	13.92	0,74	0,27	4 48	7.04	0,137		11,545	
P04	V	Saxe, 203P	74.50	13.62	0,10	4 35	0.29	6.63	0,154		11,545	
P05	V	Minas Gerais, Agna Snja, Brésil	66.48	18,28	0.55	6 30	0,25	8 24	0,154		11,001	
P06	V	Sansvika, Norvège, L112	73 65	12.18	0,53	2 71	0,10	10.03	0,210			
P07	Μ	Moncaup, Hte Garonne, France, 98,178	59.47	27 48	0,55	11 70	0.80	10,95	0,142		11 507	
P08	Μ	Zöblitz, Saxe, 12.203	72.30	16.21	0,55	3.96	0,00	6 17	0,510		11,527	
P09	М	Cordano Mollinazzo, Italie, 128,22	70.32	15,87	0,65	877	0,71	1 13	0,185		11,520	
P10	Μ	Ambodirafia, Madagascar, 119.32	49.55	48.02	0.77	1 21		0.45	0,104		11,017	
P 11	М	Mine Diamant, Le Cap. Afr. Sud. 87.28	75.05	15.64	0,53	7 37	1.09	0,45	0,492		11,409	
P12	S	Pariqui, Martiniana Po, Italie	98.05	1 24	0.15	0.30	0.26	0,52	0,172		11,505	11 450
R 01	V	Mason's Branch, Caroline, USA, 219R	53.32	41.02	1.32	3.95	0,20	0.38	0,012		11 500	11,439
S01	\mathbf{V}	Chanteloube, Haute Vienne, France	,	48 89	50.66	0.45		0,50	0,455	0.401	11,509	11,500
S02	V	St Marcel, Piémont, Italie	2.29	2.36	75 22	18 49	1 64			0,491	11,505	
S05	V	Chanteloube, Haute Vienne, France	,	41.19	58.42	0.37	0.02			0,050	11,005	
S07	V	Chanteloube, Haute Vienne, France	0.36	48.00	50.82	0.82	0,02			0,415	11,595	11 573
S08	V	Ala, Piémont, Italie, 424S	1.65	2.69	80.67	14.06	0.68	0.25		0,400	11,500	11,373
S09	V	Ile d'Elbe, Italie	-,	9.94	87.32	0.90	0,00	0,20		0,052	11,002	
S10	V	Chaffe, Cocol, Brésil, 186S	1.31	28.71	69 49	0.06	0.42			0,102	11,020	
S12	V	Zermatt, Suisse	3.55	27.41	42.91	20.27	5.86			0,297	11,006	
S13	V	Craveggia, Piémont, Italie	4.32	72.88	20.07	2 73	5,00			0,510	11,070	
S14	V	Brésil	0.03	35.83	62.08	2,75	0.03			0,764	11,551	11 500
S15	Μ	Tsimananarana, Madagascar, 109,916	-,	0.64	96.80	2,02	0,05	0.13		0,007	11,000	11,390
S16	Μ	Diamantina, Brésil, 108.862	0.44	0.38	92,20	3 59	3 41	0,15		0,007	11,017	11 640
S17	М	Ankaratra, Madagascar, 108.1944	-,	2.91	92.20	4 40	0.47	0.02		0,025	11,029	11,040
S18	Μ	Tsilaisina, Madagascar, 111.456		1,17	96.05	2 50	0.27	0,02		0,030	11,013	
S19	Μ	Morafino, Madagascar, 111.758		3.58	92.78	3.40	0.24			0.012	11 620	
S20	Μ	Maharitra, Madagascar, 121.46	0.94	38.13	54.68	6.02	0.08	0.16	0 976	0,057	11,020	
S21	М	Maharitra, Madagascar, 111.716	-,- ,	11.97	73.18	14 71	0.14	0,10	0,270	0,411	11,595	
S22	М	Broken Hill, Australie, 97.311	0,43	18,93	72.90	7.14	0.36	0.23		0,140	11 612	
		Sense - The Robert Algebra in Sector and Algebra - Sec. Sec. Sec. Sec. Sec.		,	-,-,-		0,00	0,00		0,200	11,013	

Tab. 1 Echantillons de grenats alumineux naturels étudiés.

Notes: Coll. = Collections: (S) Smith, (M) Muséum National d'Histoire Naturelle, Paris, (V) Vésignié au MNHN. Paramètres chimiques: fMg = Fe/(Fe + Mg) et fMn = Fe/(Fe + Mn), cations divalents seulement. Mailles calculées: diff. = par diffraction-X sur poudre; mono. = sur monocristal.

– les valeurs de la maille «a» calculées par diffractométrie X sur poudre de grenat avec étalon interne de KCl et radiation CuK α (ce travail); les corrélations entre les données Raman et les données cristallographiques acquises par diffractométrie sur monocristal sur les mêmes cristaux seront traitées ultérieurement.

3. Spectres Raman des grenats alumineux naturels

Sur les vingt-cinq bandes prévues par la théorie des groupes pour un grenat dont la symétrie idéale serait Ia3d (Oh¹⁰) (ex: HOFMEISTER et CHOPELAS, 1991; GILLET et al., 1992) les spectres Raman des grenats alumineux offrent une douzaine de bandes principales auxquelles s'ajoutent des épaulements et des bandes de faible intensité ou de présence sporadique. Les bandes principales sont repérées par les mêmes chiffres romains à partir de l'excitatrice que ceux utilisés dans l'article I, permettant ainsi d'établir des comparaisons entre grenats alumineux et calciques et surtout de s'affranchir de la numérotation théorique (ex: HOFMEISTER et CHOPELAS, 1991) qui montre des incompatibilités avec nos observations «naturalistes» (PINET et SMITH, 1993; SMITH et PINET, 1993a et ce travail). Des études préliminaires sur quelques échantillons synthétiques sur le joint Alm-Gro ont permis de confirmer l'exactitude des correspondances de nos nomenclatures entre les bandes Raman des séries calciques et alumineuses (SMITH et PINET, 1993b).

Fig. 2 Localisation dans un diagramme triangulaire (Pyr-Alm-Spe) des grenats alumineux naturels étudiés en microspectrométrie Raman: $\bullet < 5\%$ de (Gro + And + Ouv); \bigcirc entre 5 et 10%; \square entre 10 et 20%; et $\triangle > 20\%$ (Tab. 1). Dans ce diagramme (et Figs 3, 5 et 7) «zone A» et «zone B» signalent les compositions à partir desquelles les spectres Raman présentent des changements significatifs d'intensités de certaines de leurs bandes.

Les nombres d'onde de l'ensemble des bandes Raman obtenues pour les grenats alumineux sont donnés dans le tableau 2 qui comprend également la position et l'attribution des bandes fournies par HOFMEISTER et CHOPELAS (1991) pour les pôles naturels de Pyr, Alm et Spe.

Les figures 3, 5 et 7 présentent une sélection de spectres afin de pouvoir observer les évolutions de leur morphologie. Dans les figures 4, 6, 8 et 9, les lignes solides ou en tiretés (pour les tendances moins sûres) concernent uniquement nos données et ne sont pas censées prouver ou nier une quelconque relation avec les bandes reconnues par HOFMEISTER et CHOPELAS (1991) qui, pour faciliter les comparaisons dans le texte, sont distinguées sous forme de flèches accompagnées du numéro de la bande «HC».

3.1. DOMAINE 1100-750 cm⁻¹: BANDES DE I A IV

Suivant de nombreux auteurs ce sont six bandes (HC1 à HC6) qui sont assignées dans ce domaine, soit deux bandes $(1A_{1g} + 1E_g)$ qui correspondraient aux vibrations ν_1 d'élongations symétriques des liaisons Si–O des tétraèdres (SiO₄) et quatre bandes $(1E_g + 3T_{2g})$ de vibrations ν_3 d'élongations antisymétriques de ces mêmes liaisons (ex: MOORE et al., 1971).

Les spectres Raman des grenats alumineux naturels des séries Pyr-Alm et Alm-Spe montrent en général quatre bandes principales de I à IV. Des épaulements ou faibles bandes existent aussi mais ne sont pas numérotés à cause de leur présence sporadique (Fig. 3 et Tab. 2). Un épaulement situé à 843 ± 2 cm⁻¹ est assigné à un artefact lié à l'utilisation d'un objectif Olympus. Deux autres bandes à 898 ± 2 cm⁻¹ et 919 ± 2 cm⁻¹, de plus faible intensité lui sont toujours associées, mais coïncident ici avec les positions des bandes II et III.

Par rapport aux grenats calciques naturels et en particulier au pôle Gro (G20), les grenats alumineux montrent les phénomènes suivants.

- Une bande I plus intense quelque soit l'orientation des plages minérales par rapport au faisceau laser.

- Une bande II qui prédomine sauf entre le pôle Pyr et la zone A (située entre R01 et P10).

– Une bande III individualisée du pôle Pyr à la zone A mais qui devient un épaulement de la bande II jusqu'au pôle Alm et dans toute la série Alm-Spe (et non pas un épaulement de la bande IV comme pour les grenats calciques).

- Un affaiblissement d'intensité de l'ensemble des bandes Raman à partir de la zone B (entre S07 et S14) de telle sorte que le pôle Spe fournit un spectre Raman d'intensité sensiblement comparable à celle du pôle Gro, bien qu'étant décalé en nombres d'onde.

- Les nombres d'onde des bandes I à IV sont tous plus grands que ceux des mêmes bandes des grenats calciques.

Ce dernier point explique pourquoi ces quatre bandes présentent un glissement de leur nombre d'onde vers de plus basses valeurs lorsque les échantillons de grenats alumineux renferment plus de 5% de grenats calciques en solution solide (symboles vides, Fig. 4).

Les nombres d'onde des bandes I à IV des séries Pyr-Alm et Alm-Spe suivent tous la séquence Pyr > Alm > Spe (ce qui est résumé dans les triangles schématiques à droite de la Fig. 4). Pour la bande III, si un seul pic existe entre les pôles Pyr et Alm, entre l'Alm et la Spe il semble exister deux bandes dont l'une, de tendance incomplète, est numérotée IIa. Rappelons que dans les grenats calciques c'est la bande III qui montre la plus grande dispersion des données (PINET et SMITH, 1993), mais le parasite à 843 \pm 2 cm⁻¹ a probablement contribué à cette dispersion.

Quand les positions des bandes aux pôles des séries naturelles sont comparées à celles données par HOFMEISTER et CHOPELAS (1991) pour les mêmes pôles, il existe d'assez bonnes correspondances pour les bandes I (HC1), II (HC5), III (HC3) et IV (HC4) sauf au pôle Alm où les positions des bandes HC1, HC5 et HC3 sont systématiquement plus basses. Un examen rapide des figures 4, 6, 8 et 9 montre que les valeurs de HOFMEISTER et CHOPELAS pour l'Alm sont souvent inférieures aux valeurs des pôles extrapolés de nos données, ceci étant lié aux teneurs conjointes de 7 mol.% de Spe et de 5 mol.% d'ugrandite dans l'Alm mesuré par ces auteurs. Entre les pôles Alm et Spe la tendance de la bande hypothétique IIa est compatible avec la position de la bande HC6 au pôle Spe. Mis à part quelques très faibles pics, la bande HC2 n'a pas été détectée.

3.2. DOMAINE 750–450 cm⁻¹: BANDES DE V A IX

Sept bandes (HC7 à HC13) ont été prévues dans ce domaine $(1A_g + 2E_g + 4T_{2g})$ qui correspondraient aux vibrations ν_2 et ν_4 dues (ex: MOORE et al., 1971) aux modifications de l'angle des liaisons (O-Si-O) à l'intérieur des tétraèdres.

Les grenats alumineux naturels fournissent sept bandes (Fig. 5), répertoriées V, VI, VIa, VII, VIIa, VIII et IX, qui montrent les propriétés suivantes.

- Les bandes de ce domaine sont dans l'ensemble plus intenses (surtout VIII) que les bandes

HCn°	Attrib.	Symétrie	Bande	HCPyr	P12	P06	P03	P02	P04	P11	P08	P05	P 09	P07	R 01	P10
1	v3	T2g	I	1062	1062 {1046}	1055 {1042}	1058 {1052}	1052	1053	1055	1055	1051	1052	1051	1051	1048
					{1035} [993]					{1039}	[1010]			{1028}		
2	v 3	Eg		938							{930}					
5	v 1	A1g	II	925	925	917	920	920	917	922	922	917	<u>918</u>	<u>917</u>	<u>919</u>	<u>920</u>
6	v 1	Eg		911	917											
3	v 3	T2g	111	899	[900]	900		{903}	[894]	897	900	897	894	{893}	900	{902}
						889	{887}	{885}								
4	v 3	T2g	IV	866	868	<u>861</u>	861	860	<u>858</u>	859	864	857	<u>860</u>	<u>860</u>	864	867
							[832]	{834}		{832}	{822}	{839}				
7	v 4	T2g	V	648	648	645	646	645	645	646	647	641	646	642	640	640
8	v4	Eg		626												
		U	VI			[610]	[612]		[610]							[605]
9	v4	T2g	VIa	598	[597]	[595]	[595]	[594]		[602]	[597]	[603]	[592]	[594]	[598]	[590]
		0				[587]	[584]		[586]		Loose is 1	[585]	Contra Sec.	L	[580]	[583]
11	v2	A1g	VII	562	559	560	561	561	560	561	[563]	[559]	560	561	[561]	561
12	v2	Eg	VIIa	524		[524]	[530]		{524}	{522}	r1	1			[]	
10	v 4	T2g	VIII	510	511	511	512	513	511	511	514	510	507	507	<u>505</u>	505
10	- 2	T1-	TV	400	400	[400]	[403]	[490]	(407)	[402]		407	(400)	(407)	[407]	(497)
13	v2	12g	IX	490	490	[489]	[492]	[489]	{487}	{492} [495]	[405]	487	{490}	{48/}	{487}	{480}
14	v 2	Eg		439		[430]	[423]		[410]	[425]	[425]	[423]		[400]	14101	
					[207]	[417]	(200)	(205)	[413]		[408]	[403]	(202)	[409]	[410]	
15	D(O'O)		N/T	270	[397]	{394} (377)	(399)	(393)	[401]	(200)	{394}	(202)	{393}	(204)	{385}	277
15	$R(SIO_4)$	12g	XI	379	381	{3//}	{377}	{3/8}	{382}	{389}	382	{383}	(070)	{384}	3/4	3//
16 17	D (0:0)	D	2717	2451240	244	2/2	264	015	{3/4}	{3/8}	260	{3/3}	{370}	2/1	054	252
16 + 17	$R(SiO_4)$	Eg + Aig	XII	365/362	364	363	364	365	366	363	368	305	365	361	356	353
10	D (CLO)	-	XII + XIIa		(250)		(252)	050	0.50	(0.74)	(0.5.5)	358	{360}	355		0.15
18	$R(SiO_4)$	12g	XIIa	350	{350}	()	{352}	350	359	{351}	{355}	[351]	{348}	{348}	344	345
26	$T(SiO_4)$	Eg	XIII	342	340	{342}	{342}	{343}	343		{344}		{330}			
			XIIIa			(· •	<i>(</i>)		
27	T(SiO₄)	72g	XIIIa + XIIIb	316	318	{317}	325	323	[311]	321	324	316	{320}	{320}	316	{320}
			XIIIb													
			XIIIc													
			XIIIc + XIIId													
			XIIId											-		
									[297]		[294]			[294]		[293]
28	$T(SiO_4)mix$: T2g		285	[284]			[283]				[286]	[288]	[286]		[273]
22	T(X)	T2g	XIV*Ca	272	0.00		415.1 XX			99102 DØ 11274	17 - BADY	[259]		[262]		
29	T(SiO ₄)mix	T2g	XIVa	230	[229]		[233]	[229]	{229}	[233]	[231]					
													{225}	{222}	{222}	226
24	T(X)	T2g	XV	208	<u>208</u>	<u>212</u>	<u>212</u>	<u>210</u>	<u>213</u>	<u>212</u>	<u>207</u>	<u>205</u>	<u>210</u>	214	<u>209</u>	<u>211</u>
25	T(X)	Eg		203	{197}	{204}	{204}		{201}	{197}			{200}		{196}	
			XVa			{194}	{193}	{192}			[190]		{192}			{191}
			XVb		[177]				[186]			[183]			[177]	[178]
			XVI								[165]	[163]				[164]
					-				- 100 C							

Tab. 2 Bandes Raman répertoriées sur les spectres de divers grenats alumineux naturels étudiés.

Notes: HCn° = numérotation d'après HOFMEISTER et CHOPELAS (1991)

HCPyr, HCAlm et HCSpe = leurs valeurs pour les pôles, R = rotation, T = translation, X = cation dans les sites dodécaédriques, _ = bande forte, [] = bande faible, {} = épaulement.

correspondantes des grenats calciques pour lesquels la bande VII est souvent prédominante (PINET et SMITH, 1993). autour du pôle Alm avec souvent une bande VIa plus intense que VI. – La bande VII est facile à suivre bien que peu

- La bande V est plus intense que VIII uniquement pour les compositions proche du pôle Pyr. ra

- Les bandes VI et VIa sont mieux exprimées

intense. La bande VIIa n'a qu'une présence sporadique. - La bande IX est un épaulement de la forte

166

K36	A15	K 06	A17	A10	A02	A12	A19	A11	A18	A05	A07	HCAlm	Bande	Symétrie	Attrib.	HCn°
1037	1048	1035	1042	1041	1039	1042	1040	1039	1036	1036	1034	1032	I	T2g	v3	1
[995]		[044]					[020]					020		П.	2	2
<u>912</u> 904	<u>919</u>	[944] <u>910</u>	<u>916</u>	<u>912</u>	<u>918</u>	<u>912</u>	[929] <u>915</u> {903}	<u>915</u>	<u>914</u>	915	<u>914</u>	920 910 + 910) II . Ha	Eg A1g + Eg	v3 g v1 + v1	2 5 + 6
{892}	{898 }	{880}	{899 }	{899 }	{898}	{901}	{891}	{901}	{899 }	{897} [871]	{898}	892	III	T2g	v3	3
851	865	850	864	864	861 {853}	864	{866} 852	863	859	[863] [852]	862	862	IV	T2g	v3	4
636	636	[636]	634	633	635	636	[635]	630	632	[629]	629	628	v	T2g	v 4	7
[602] [583]	[588]	[603] [591]	[588]	{600} 585	583	{597} 584 {564}	[598] [583]	{596} 582	{598} [579]	594	603 {581}	593 576	VI VIa	Eg T2g	v4 v4	8 9
[556]	[558]	[554]	561	557	557	[556]	556	555	556	[555]	556	553	VII	A1g	v 2	11
504	502	[525]	500	501	[532]	501	[526]	500	501	400	{517}	521	VIIa	Eg	v2	12
<u>504</u> (477)	<u>203</u> [482]	502	<u>502</u> (480)	501	<u>502</u> [491]	<u>501</u> (490)	502	<u>500</u> (476)	<u>501</u> [477]	499	<u>498</u> (476)	498		T2g	v4 v2	10
[431]	[402]	[403]	[400]	[400]	[401]	[400]	[412]	[470]	[416]	[4/9]	[470]	474	IA	Γ2g Fα	v2 v2	13
[]			[409]		[404]		[406]	[125]	[410]	[403]	[404]	121		26	12	
{392}	{400}	[395]	[394]	[402]	{391}	{389}	{391}		L O MOL		L ter eu					
{375}	370	{382} {366}	372	373	372	374	375	<u>373</u>	<u>378</u> <u>370</u>	<u>371</u>	<u>370</u>	368	XI	Eg	R(SiO ₄)	16
<u>360</u>		<u>356</u>			358		354			101 2101		355	XII	T2g	$R(SiO_4)$	15
[345]	<u>351</u>		<u>350</u>	<u>347</u>	<u>349</u>	<u>347</u>	<u>345</u>	<u>346</u>	<u>349</u>	<u>344</u>	<u>345</u>	347	XII + XIIa XIIa	Alg	R(SiO ₄)	17
{332}	{333}	{327}	{335}	331	{332}	{333}	<u>332</u>	<u>329</u>	334	<u>325</u>	<u>323</u>	326	XIII XIIIa	Eg	T(SiO ₄)	26
[313]	316		{317}	316	317	316		{317}	{315}		315	312	XIIIa + XIIIb XIIIb XIIIc	T2g	R(SiO ₄)	18
	{306}	[300]	{310}	{307}	[301]	{306}	{309}	{301}	{296}		{303}	293	XIIIc + XIIId XIIId	T2g	T(SiO ₄)	27
			[295]	{297}				[294]					7111u			
		[285]														
[253] 239	[236]		{233}		{230}						{235}	239	XIV*Ca XIVa	T2g 🗍	Γ(SiO₄)m	x 28
218 208	<u>213</u> [209]		<u>217</u>	<u>214</u>	2 <u>14</u> (206)	<u>213</u>	217	217	217	216	<u>217</u>	212	XV	T2g	T(X)	22
[193]	{199}		{201}	[198]	[195]	{204}	×.,					198	XVa	T29 7	r(SiO.)mi	x 29
· 1	173	<u>174</u>	173	170	170	171	<u>169</u>	<u>170</u>	<u>169</u>	<u>168</u>	<u>171</u>	166	XVb	T2g	T(X)	24
	164		{164}		{163}							163	XVI	Eg	T(X)	25

bande VIII sauf vers les pôles Pyr et Spe où elle constitue une bande isolée.

– A partir de la zone B vers le pôle Spe les spectres ont tendance à se simplifier montrant surtout cinq bandes progressivement moins intenses. Ainsi l'allure du spectre Raman du pôle Spe rappelle encore celle du Gro.

Les nombres d'onde de l'ensemble des bandes suivent la séquence Pyr > Spe > Alm (Fig. 6) sauf pour les bandes VI et VII dont les tendances sont très proches de celles des bandes I et II. Les différentes tendances sont pratiquement parallèles entre elles pour la série Pyr-Alm (sauf pour la bande VII). Pour la série Alm-Spe les nombres d'onde des pôles varient peu.

Contrairement aux bandes de I à IV, il n'existe dans ce domaine aucune contrainte significative sur la position des bandes Raman en fonction de

Tab. 2 (cont.)

Bande	A16	A08	A04	A13	A14	A06	K 20	S13	A03	A20	S01	S 07	105	S20	S05	S12
I	1037	1034	1040	1040	1040	1039	1023	1037	1036	1035	1034	1034	1034	1028	1034	1025
			[985]	[991]		[975]	[996]									
II IIa	<u>913</u> {895}	<u>909</u>	916 {898}	916 {896}	<u>915</u> {897}	<u>916</u> {899}	<u>898</u>	916 {898}	<u>914</u> {898}	914 {898}	911	<u>912</u>	<u>909</u>	908	<u>911</u>	<u>900</u>
III	. ,	{885}	, ,		. ,	. ,	{886}	t j	i j	()	{889}	{892}	{889 }	{884}	{892}	
IV	867	852	862	[864]	864	860		863	{864}	860	857	857	855	851	856	844
v	635	632	[634]	[633]	[634]	633	[630] [617]	[633]	[631]	[631]	633	632	[817] [629]	[629]	632	{819} 630
VI VIa	[602] [581]	[596]	[597] {583}	[594] {581}	[598] {585}	[580]	[017]	[596]	[595] [581]	[595] {582}		[590] [585]	[581]	[594]	[593] {585}	[594]
VII VIIa	[557] {538}	[556] {522}	[556]	557	[557]	[559]	[526]	[556] [527]	[555]	[558]	[556]	556	[548]	[555]	557	548
VIII	<u>504</u>	<u>504</u>	<u>501</u>	499	<u>500</u>	<u>500</u>	501	501	501	501	<u>501</u>	<u>502</u>	<u>499</u>	502	<u>502</u>	502
IX	{480} [416]	{479}	{478}		{476} [407]	{477}	{473}	{477}	{477} [427]	{476}	{475}	{476}	{475}	{474}	{474}	{474} 427 [410]
XI	{378} {368}	{380} {367}	<u>373</u>	<u>373</u>	<u>373</u>	373	{386}	<u>374</u>	<u>374</u>	<u>374</u>	<u>374</u>	<u>375</u>	<u>373</u>	<u>373</u>	<u>374</u>	{375}
XII	352	353														
XII + XIIa			<u>346</u>	<u>347</u>	347	<u>346</u>	<u>348</u>	<u>346</u>	<u>349</u>	<u>347</u>	<u>346</u>	348	349	350	350	358
XIII	{338}	{324}	<u>329</u>	<u>329</u>	330			327	<u>329</u>	325	<u>325</u>	323	322	324	323	{327}
XIIIa XIIIa + XIIIb	[316]	[310]		[316]	[316]	322	{322}	{314}		{317}	{313}		{313}	{318}	{317}	{320}
XIIIb XIIIc	[510]	[510]		[510]	(510)				{305}	{302}	{306}	{310} [304]	{307}	{310}	{309}	{310}
XIIIc + XIIId XIIId			{301}		{304}							[297]	[295]			
											[287]	[277]	[235]	[280]	[286]	
XIV*Ca XIVa		[258] {230}		<i>(</i>)			[258]					{230}	{228}	{226}		{269} {237}
XV	<u>217</u>	{223} {219}	217	{223} 217	217	217		217	217	217	<u>218</u>	<u>219</u>	<u>218</u>	221	<u>220</u>	226
XVa		{200}	[199]	205			[202]							214		{206}
XVb XVI	173 <u>163</u>	<u>169</u>	<u>170</u>	<u>168</u>	<u>171</u>	<u>170</u>	169	169	<u>168</u>	<u>168</u>	{173} <u>167</u>	<u>169</u>	<u>167</u>	<u>166</u>	173 <u>167</u>	<u>170</u>

la concentration en solutions solides calciques des grenats alumineux car les nombres d'onde pour le Gro ne sont pas très éloignés de ces valeurs. Il ne peut y avoir ici de «marqueurs chimiques» des différents cations dans le site Y³⁺, comme il a été déduit pour les grenats calciques (PINET et SMITH, 1993), car les compositions des sites octaédriques sont ici identiques (Al³⁺). Il existe de bonnes correspondances des positions des bandes V (HC7), VII (HC11), VIIa (HC12), VIII (HC10) et IX (HC13). Par contre si HC8 correspond à la bande VI entre les pôles Alm et Spe, il ne situe aucune bande au pôle Pyr. Les valeurs de HC9 sont assimilées à la bande VIa aux pôles Pyr et Alm mais moins bien au pôle Spe.

S 14	S10	S22	S21	S09	S 17	S08	S02	S19	S18	S16	S15	HCSpe	e Bande	Symétrie	Attrib.	HCn°
1034	1029	1027	1025	1028	1028	1023	1026	1028	1030	1026	1027	1027	I	T2g	v3	1
	{1003}				[981]		{1006}	{1013}								
010	000	007	000	000	005	000	[976]	000	007	005	004	913		Eg	v3	2
910	909	906	<u>903</u>	<u>908</u>	<u>905</u>	<u>900</u>	<u>901</u>	<u>902</u>	906	<u>905</u>	904	905		Alg	v1	2
[897]	005	077	075	000	(070)	072	(077)	(077)	(001)	(071)	(004)	892		Eg	V1	0
	885	8//	8/5	880	{8/9}	8/3	{8/0}	[8/7]	{881}	{8/1}	{884} [875]	8/8	111	12g	V3	5
857	852	851	<u>850</u>	<u>851</u>	849	<u>843</u>	<u>843</u>	850	850	<u>849</u>	846	849	IV	T2g	v3	4
{851}				(1010	(0) - 1	()	()						
[(04]	(22	[(20]	(20	{820}	(20)	(00	{818}	{817}	{827}	{831}	((20)	(00	T 7			7
[631]	633	[629]	630	630	630	633	633	632	[633]	633	{630}	628	v	12g	v 4	1
[504]		[502]					{614}	[007]	[501]		[602]	502	N/I	Ea	4	0
[394]		[392]	[592]	[592]		[592]	[577]		[291]		[392]	572	VI	Eg	v4 v4	0
			[365]	[202]		[202]	[377]					515	v Id	12g	v4	2
[553]	552	[552]	550	553	550	552	552	[554]	[556]	552	552	550	VII	A1o	v2	11
[555]	552	[332]	550	{519}	[528]	[528]	554	[554]	[000]	[521]	552	521	VIIa	Εø	v2	12
503	501	502	502	503	501	502	504	503	504	503	501	499	VIII	T2g	v4	10
[476]	476	[474]	475	475	475	476	[474]	476	477	476	[473]	472	IX	T2g	v2	13
[]	., c	[]		[413]		., 0	[423]				[]			8		
[402]	[402]		[408]	[404]	[402]	[404]						410		Eg	v 2	14
[387]				. ,			{393}	{387}		{397}				U		
<u>374</u>	374	375	374	<u>374</u>	<u>373</u>	{376}	{378}	376	376	375	<u>374</u>	372	XI	Eg	$R(SiO_4)$	16
							<u>364</u>						XII	nation into in	100000	a trans destruction
350	348	350	352	350	353	<u>355</u>	{355}	351	354	355	352	350 + 34	47 XII + XIIa 7	$\Gamma 2g + A1$	g $R(SiO_4)$	15 + 17
													XIIa			
324	322	325	326	322	<u>321</u>	{325}	327	323	323	325	321	318	XIII	Eg	T(SiO₄)	26
								{314}		322		314	XIIIa	12g	$R(S_1O_4)$	18
(011)	(210)			(200)	(204)	(202)	(202)	(202)	(202)	(20.4)	(205)	200	XIIIa + XIIIb			
{311}	{310}			{308}	{304}	{302}	{302}	{302} (205)	{302}	{304} (204)	{305}	300	XIIID XIII.	T'2 -	$T(\mathbf{S}; \mathbf{O})$	07
{303}				{296}				{295}		{296}				12g	$\Gamma(SIO_4)$	21
{291}	{290}			[289]	[287]	[283]		[279]	{287}	{289}	{286}		XIIIC + XIIId XIIId			
	[279]	[279]				[275]	-									
						[262]	[250]					2	XIV*Ca			2.2
	{229}		233		{235}							229	XIVa	T2g	$T(SiO_4)mix$	28
222	220	221	<u>225</u>	<u>223</u>	223	<u>229</u>	229	<u>225</u>	225	<u>225</u>	223	220	XV	T2g	T(X)	22
				-		[190]	[198]		-			194	XVa	T2g	T (SiO ₄)mix	29
	{172}	4.67	{173}	{177}	175	174	4 - 0	{177}	{175}	[177]	{176}	173	XVb	T2g	T(X)	24
<u>168</u>	<u>167</u>	<u>167</u>	<u>167</u>	<u>167</u>	<u>166</u>	{169}	<u>169</u>	<u>168</u>	<u>168</u>	<u>168</u>	<u>167</u>	162	XVI	Eg	T(X)	25

3.3. DOMAINE 450–280 cm⁻¹: BANDES DE XI A XIIIC

Les bandes Raman de ce domaine seraient essentiellement liées aux rotations et translations des tétraèdres SiO_4 (ex: MOORE et al., 1971).

Les grenats alumineux naturels montrent un ensemble de plusieurs pics groupés dans un seul «massif» large, parfois encadré par des épaulements sporadiques. Les phénomènes suivants sont observés (Fig. 7).

- Le massif du pôle Pyr à la zone A est complexe et à bandes peu intenses.

- La bande XI domine entre les pôles Alm et Spe.

- La bande XIII devient plus intense que XII de la zone B au pôle Spe.

- Le pôle Spe ne possède aucune analogie

Fig. 3 Allure des spectres Raman, entre 1100 et 750 cm⁻¹, de quelques grenats alumineux naturels (< 5% d'ugrandite) le long des séries Pyr-Alm et Alm-Spe et pour un Gro (G20). Les bandes Raman répertoriées sont numérotées de I à IV vers l'excitatrice (Tab. 2).

Fig. 4 Evolution des nombres d'onde des bandes Raman de I à IV des grenats alumineux naturels en fonction des substitutions isovalentes $Mg^{2+} = Fe^{2+} = Mn^{2+}$. Symboles: entiers (pleins ou vides suivants leur teneur en Ca^{2+}) = bandes fortes ou moyennes; les mêmes avec évidements diagonaux = épaulements; croix = faibles bandes. Il s'agit de deux projections distinctes juxtaposées au pôle Alm dont les abscisses sont des proportions chimiques unidimensionnelles (Tab. 1). A droite apparaît la position en nombre d'onde des bandes aux pôles des séries avec isopleth (en tiretés). La variation des nombres d'onde (du plus grand au plus petit) est précisée par le sens de la flèche. Les repères (HC et/ou un chiffre arabe) signalent les positions des bandes données par HOFMEISTER et CHOPELAS (1991) pour les pôles des séries. Les tendances linéaires sont déduites de nos données.

morphologique avec le pôle Gro contrairement à ce qui avait été observé pour les domaines des nombres d'onde précédents.

- Le Gro montre quatre bandes distinctes (X, XI, XII et XIII) dont celle de plus haute fréquence (X) n'existe pas pour les grenats alumineux sauf s'ils sont riches en Ca.

Seules les bandes XI et XIII peuvent être suivies sans ambiguïté en nombre d'onde entre les trois pôles (Fig. 8).

Les bandes XII et XIIa (cette dernière étant moins sûre), distinctes au pôle Pyr semblent converger au pôle Alm constituant un pic unique jusqu'au pôle Spe. Cette superposition de bandes explique la plus forte intensité du pic composite autour du pôle Alm. Le fait que le pic dénommé XII + XIIa (Fig.7) soit parfois relativement large soutient cette hypothèse de la superposition de bandes mais avec toujours un léger décalage des nombres d'onde.

Comme pour les grenats calciques (PINET et SMITH, 1993), deux, trois ou quatre bandes (XIIIa à XIIId) sont décelées après la bande XIII mais elles ne correspondent en général qu'à des épaulements, ce qui laisse planer des doutes sur le suivi des tendances de ces différentes bandes. Cependant l'existence d'un véritable pic entre les pôles Pyr et Alm permet de supposer la convergence au pôle Alm des tendances des épaulements XIIIa et XIIIb de la série Alm-Spe. Les épaulements XIIIc

Fig. 5 Allures des spectres Raman, entre 750–450 cm ¹, pour les mêmes échantillons que ceux de la figure 3, et repérage des bandes Raman de V à IX.

Fig. 6 Evolution des nombres d'onde des bandes de V à IX avec la même présentation que la figure 4. Les bandes VI et VIa ne sont précises qu'au pôle Alm et, comme la bande VIIa (peu fréquente), elles sont totalement ou partiellement tracées en tiretés.

et XIIId convergeraient aussi au pôle Alm mais ce pic composite disparaît vers le pôle Pyr. La convergence des bandes XIII et XIIIa vers le pôle Spe pourrait expliquer pourquoi l'intensité du pic dénommé (XIII et XIIIa) est supérieure à celui dénommé (XII et XIIa) (Fig. 7).

Les tendances des bandes XI et XII avec (XII + XIIa) suivent la séquence Pyr > Spe > Alm comme celle qui prédomine dans le domaine précédent (Fig. 6), tandis que la bande XIII suit la séquence Pyr > Alm > Spe comme toutes les bandes du domaine 1100-750 cm⁻¹ (Fig. 4).

Les superpositions interprétées ci-dessus nécessitent l'existence de huit bandes dans le domaine 370–280 cm⁻¹, donc deux de plus que l'ont déduit HOFMEISTER et CHOPELAS (1991), mais il existe aussi plusieurs autres problèmes de correspondances car seule la tendance XIII (HC26) pour les trois pôles est compatible. Echanger l'attribution HC15 par HC16 au pôle Pyr permet d'établir la correspondance XI (HC16). Le remplacement de l'attribution HC18 par HC17 à ce même pôle permet de proposer les tendances XII (HC15) et XIIa (HC17). De même remplacer l'attribution HC27 par HC18, toujours au pôle Pyr, permet les correspondances XIIIa ou XIIIb (HC18) et XIIIc ou XIIId (HC27). Cependant HC28 ne correspond qu'à de faibles bandes sans tendance évidente.

HC14 ne correspond qu'à une dispersion de faibles bandes (Fig. 8) dont la plupart appartiennent à des grenats alumineux relativement calciques, ce qui ne permet pas de tracer une tendance pour la bande X qui n'existe nettement que dans le Gro (Fig. 7) (PINET et SMITH, 1993). Quelques points situés entre ceux des bandes X et XI correspondent sans doute aux épaulements dénommés Xa et Xb dans les grenats calciques, dont au

Fig. 7 Allure des spectres Raman, entre 450–120 cm⁻¹, pour les mêmes échantillons que ceux des figures 3 et 5, et repérage des bandes de XI à XVI.

Fig. 8 Evolution des nombres d'onde des bandes XI à XIIId comme pour les figures 4 et 6.

moins la bande Xa n'a pas une attribution HC. En effet il y a coïncidence des bandes Xb et XI au pôle Gro (Fig. 8 dans PINET et SMITH, 1993) de sorte que la possibilité existe que la bande XI des grenats alumineux représente la bande Xb des grenats calciques, et vice versa.

3.4. DOMAINE 280–120 cm⁻¹: BANDES DE XV A XVIb

Les bandes de ce domaine seraient principalement liées aux translations des dodécaèdres renfermant les éléments divalents ainsi qu'aux translations mixtes (dodécaèdres + tétraèdres) (ex: HOFMEISTER et CHOPELAS, 1991). On observe notamment les points suivants (Fig. 7).

- La bande XIV^{*Ca} n'existe que pour le Gro et ceux des grenats alumineux qui sont relativement riches en Ca. Le fait que cette bande puisse être considérée comme un «marqueur chimique» de la présence du Ca a déjà été traité dans DELANY (1981) et PINET et SMITH (1993). Il semble bien que les bandes X, Xa et Xb des grenats calciques puissent appartenir à la même catégorie.

- La bande XV et l'une ou l'autre des bandes XVb et XVI sont généralement intenses, surtout ce dernier ensemble qui domine dans la série Alm-Spe mais qui s'affaiblit de l'Alm vers la zone A avant de disparaître au pôle Pyr.

- Il existe aussi de petites bandes ou épaulements dénommées XIVa et XVa qui n'apparaissent que dans certaines fourchettes de compositions chimiques.

Les quelques données pour la faible bande XIV^{*Ca} dans les grenats alumineux calciques ne permettent pas d'ébaucher une tendance. Concernant les autres bandes seule la bande XV fournie une tendance continue et elle est la seule parmi toutes les bandes Raman répertoriées pour les grenats alumineux qui montre la séquence Spe > Alm > Pyr. Les bandes XIVa et XVa semblent suivre parallèlement cette même tendance entre les pôles Pyr et Alm. Entre les pôles Alm et Spe la bande sporadique XIVa semble converger vers la bande XV, constituant ainsi un seul pic large à ce dernier pôle.

Pour des nombres d'onde plus bas, les bandes XVb et XVI fournissent des tendances assez nettes, mais ces deux bandes disparaissent vers le pôle Pyr. Cependant si la bande XVI est l'épaulement de la bande XVb vers le pôle Alm, l'inverse devient vrai vers le pôle Spe.

Dans la série Alm-Spe il existe de bonnes correspondances avec les attributions de HOFMEISTER et CHOPELAS (1991) pour XIVa (HC28), XV (HC22), XVb (HC24) et XVI (HC25), mais aucune pour HC29 sauf une extrapolation spéculative de la bande XVa. La possibilité d'une bande unique HC24–HC25 dans la série Alm-Spe est exclue en raison de l'existence de deux pics distincts parfois observés.

Dans la série Pyr-Alm il n'existe aucune correspondance possible entre la position de nos bandes et toutes les attributions de HOFMEISTER et CHOPELAS (1991). Notamment il manque des attributions HC pour le Pyr entre 180 et 165 cm⁻¹ pour correspondre aux bandes XVb et XVI, et les attributions HC22 et HC28 pour le Pyr se situent respectivement à 275 cm⁻¹ et 285 cm⁻¹ dans un domaine peu actif en Raman pour ces grenats (Figs 8 et 9). Toutefois un glissement de toutes les attributions HC pour le Pyr vers de plus bas nombre d'onde faciliterait les tentatives de correspondances en créant une compatibilité entre les trois pôles pour l'ensemble des cinq bandes. Cette interprétation explique pourquoi nos données n'ont pas confirmé les positions des attributions HC28 et HC22 au pôle Pyr.

3.5. COMMENTAIRES

De la même façon que ce qui avait été fait pour les grenats calciques (PINET et SMITH, 1993) le tableau 3 présente les séquences entre les nombres d'onde des trois pôles sous forme d'une attribution de chaque bande Raman à une des douze sous-classes possibles. De ce tableau il ressort les informations suivantes:

(i) Toutes les bandes (sauf XV) appartiennent à une des quatre sous-classes (1 à 4) où le Pyr a le nombre d'onde le plus élevé, ce qui est en corrélation inverse avec le plus petit rayon ionique et la plus petite masse atomique du Mg^{2+} par rapport aux deux autres cations divalents.

(ii) Les sous-classes 1 et 2 correspondent à *la* séquence inverse des rayons ioniques $Mg^{2+}_{(0,89)}$ $< Fe^{2+}_{(0,92)} < Mn^{2+}_{(0,96)}$ Å (SHANNON et PREWITT, 1969) des cations divalents dans les sites dodécaédriques, seules variables chimiques du système étudié. S'il existait une corrélation avec le rayon ionique, le nombre d'onde pour le pôle Gro avec Ca²⁺_(1,12) devrait être plus petit que ceux des trois autres pôles; ceci est vrai pour toutes les bandes des sous-classes 1 et 2 sauf pour la bande XIII.

(iii) La sous-classe 4 possède la séquence inverse des masses atomiques $Mg^{2+}_{(24)} < Mn^{2+}_{(55)} < Fe^{2+}_{(56)}$. Cependant la correspondance avec les masses atomiques n'est plus vraie quand on considère le cation $Ca^{2+}_{(40)}$, et les nombres d'onde de ces bandes fournissent des séquences variées avec le pôle Gro (Tab. 1 dans PINET et SMITH, 1993).

(iv) Il semble donc que *la différence des rayons ioniques* du cation dans le site X²⁺ *influence de*

Fig. 9 Evolution des nombres d'onde des bandes XIVa à XVI comme pour les figures 4, 6 et 8.

So	us-classe	Bandes
1 2	Pyr >= Alm >> Spe Pyr >> Alm >= Spe	II, (III), IV, VII I, II, (VI), VII, XIII
3 4	Pyr >= Spe >> Alm Pyr >> Spe >= Alm	XI V, (VIa), VIII, IX, XI, XII
5 6	Alm >= Spe >> Pyr Alm >> Spe >= Pyr	
7 8	Alm >= Pyr >> Spe Alm >> Pyr >= Spe	
9 10	Spe >= Pyr >> Alm Spe >> Pyr >= Alm	
11 12	Spe >= Alm >> Pyr Spe >> Alm >= Pyr	XV XV

Tab. 3 Attribution des bandes Raman des grenats alumineux naturels à leur sous-classe de tendance.

Notes: () indique une tendance moins sûre.

Une bande apparaît deux fois quand elle est entre deux sous-classes (II, VII, XV).

Sont éliminées du tableau: les marqueurs chimiques du Ca (X, Xa, Xb, XIV*Ca); les bandes insuffisamment continues (IIa, VIIa, XIIa, XIIIa, XIIIb, XIIIc, XIIId, XIVa, XVa, XVb, XVI).

façon assez directe les variations en nombre d'onde des vibrations des sous-classes 1 et 2, sauf pour la bande XIII, mais qu'une telle relation ne lie pas la différence des masses atomiques avec la sous-classe 4.

(v) Les trois bandes V, VIII et IX rassemblées dans la sous-classe 4 sont précisément celles qui ont été considérées comme des «marqueurs chimiques» des cations Y3+ dans les grenats calciques en fonction de leur triplement, c'est-à-dire présentant une tendance séparée pour chacun des trois cations Al³⁺, Fe³⁺ et Cr³⁺ (Fig. 6 dans PINET et SMITH, 1993). L'autre marqueur chimique, la bande VI, se trouve dans la sous-classe 2, mais la figure 6 montre que sa séquence est effectivement peu différente de celles des bandes V, VIII et IX, toutes ayant des nombres d'onde très proches pour l'Alm et la Spe, comme le sont les masses atomiques de Fe²⁺ et Mn²⁺. A la différence des grenats calciques, une bande de plus a été décelée pour les grenats alumineux (VIa) qui semble avoir un comportement similaire à celui des bandes voisines. Ceci explique très bien la forte densité des triangles vers le pôle Gro pour la bande VI*Fe3+ (Fig. 6 dans PINET et SMITH, 1993) parce que cette bande a été confondue avec la VIa non décelée à l'époque.

(vi) Les bandes XI et XII, qui sont aussi attribuées à la sous-classe 4, et pour une d'entre elles également à la sous-classe 3, ont des nombres d'onde assez différents pour les pôles Alm et Spe et se distinguent donc des bandes V, VIa, VIII et IX de telle sorte qu'il existe deux groupes de comportement dans la sous-classe 4.

(vii) Les sous-classes 11 et 12 incluent la bande XV qui est très particulière car elle montre une séquence de sens opposé à celle des sous-classes 1 et 2.

(viii) Les correspondances avec les différents modes de vibration Raman seront traitées ultérieurement en regroupant les diverses données obtenues sur des grenats naturels et synthétiques (SMITH et PINET, en préparation).

4. Relations entre données Raman et la maille des grenats calciques naturels

Les valeurs du paramètre de la maille «a» déterminée par diffraction-X pour presque tous les grenats alumineux (Tab. 1) sont présentées en fonction du nombre d'onde des bandes Raman II et VIII (Figs 10a et 10b), VIII remplaçant la bande VII choisie pour les grenats calciques (Figs 10a et 10b dans PINET et SMITH, 1993). Ces bandes qui représentent les sous-classes 1 et 2 (bande II) et 4 (bande VIII) ont été sélectionnées en raison de leur intensité relativement élevée et de la clarté de leurs tendances avec la composition chimique. Deux échantillons naturels proches du pôle Gro (G16 et S04 dans PINET et SMITH, 1993) sont localisés dans ces figures afin de pouvoir examiner l'ensemble des quatre pôles alumineux.

La figure 10a montre, pour les ronds noirs, une excellente tendance linéaire entre les pôles Pyr, Alm et Spe, et qui atteint le pôle Gro. Les symboles vides situés à droite de cette tendance sont décalés en raison de la teneur de ces échantillons en Cr³⁺ qui augmente leur nombre d'onde alors que ce serait l'inverse pour le Fe³⁺ (Fig. 10a dans PINET et SMITH, 1993). Il existe donc une très forte corrélation entre «a» et le nombre d'onde de la bande Raman II, ainsi qu'avec le rayon ionique du cation X²⁺ qui semble caractériser la plupart des bandes dans les sous-classes 1 et 2 (Tab. 4) et contrôler indépendamment les deux premiers paramètres. Dans les grenats calciques où le cation X²⁺ était constant c'était la bande VII qui établissait une relation du même type concernant le rayon ionique du cation Y³⁺ (Fig. 10b dans PINET et SMITH, 1993).

La figure 10b ne signale aucune tendance entre les trois pôles Pyr, Alm et Spe. La tendance du pôle Alm extrapolée quasi-linéairement à travers le pôle Spe vers le pôle Gro, ne peut être que fortuite.

Fig. 10 Pour des grenats alumineux naturels, le paramètre «a» (en Å) de la maille, calculée par diffraction X sur poudre, est donné en fonction du nombre d'onde: (A) pour la bande II, (B) pour la bande VIII. Les symboles vides représentent des compositions de grenats alumineux naturels plus riches en And, Gro ou Ouv. Le pôle Gro est représenté par les échantillons G20 et SO4 étudiés dans PINET et SMITH (1993).

En général il n'existe aucune corrélation entre le nombre d'onde d'une bande Raman, qui représente des liaisons entre cations et ions, et la paramètre de la maille, qui est une sorte de moyenne de tous les autres paramètres géométriques (PINET et SMITH, 1993), *sauf* quand chacun de ces deux facteurs est en même temps en corrélation avec un troisième, ici le rayon ionique du cation X^{2+} (à condition bien sûr que les autres cations Y^{3+} et Z⁴⁺ soient constants).

5. Discussions et conclusions

(1) Le fait de suivre *pas à pas* en compositions chimiques les variations en nombres d'onde des différentes bandes des spectres Raman de grenats alumineux naturels proches des séries binaires largement continues (Pyr-Alm et Alm-Spe) a permis d'établir des tendances raisonnées quasilinéaires pour la plupart des bandes.

(2) Le phénomène des «marqueurs chimiques» déduit pour les bandes V, VI, VIII et IX pour Al³⁺, Fe³⁺ et Cr³⁺ dans le site octaédrique Y³⁺ des grenats calciques (PINET et SMITH, 1993) ne peut se manifester ici car Y³⁺ est toujours Al³⁺. Un phénomène identique pour «marquer» la présence de Mg²⁺, Fe²⁺ ou Mn²⁺ dans le site dodécaédrique X²⁺ des grenats alumineux n'a pas été décelé. Par contre les bandes X, Xa et Xb se manifestent comme des «marqueurs chimiques» de la présence de Ca²⁺ comme la bande XIV^{*Ca}.

(3) Par rapport aux attributions présentées par HOFMEISTER et CHOPELAS (1991), nos résultats confirment la bonne compatibilité avec ces auteurs pour *seulement* dix bandes pour les trois pôles, les autres bandes étant incompatibles ou laissant des incertitudes. Les correspondances erronées déduites par HOFMEISTER et CHOPELAS (1991) sont évidemment dues en partie à des intrapolations hasardeuses entre les trois pôles sans données intermédiaires, mais aussi au fait que le pôle Pyr, et ses compositions voisines, ne fournissent que des spectres Raman peu intenses où certaines bandes de bas nombre d'onde peuvent être difficiles à déceler.

(4) Plusieurs correspondances pour le pôle Pyr peuvent être corrigées, soit par une permutation de la numérotation HC (HC15 par HC16), soit par un glissement général des bandes HC vers de plus bas nombres d'onde (HC18 et toutes la série des bandes HC22 à HC29, sauf HC26).

(5) Parmi les incertitudes se placent: la bande HC2 qui ne peut pas être établie (mais qui pourrait être confondue avec la bande II intense); plusieurs hypothèses de superpositions de bandes (IIa et III, XII et XIIa, XIIIa et XIIIb, XIIIc et XIIId), et la difficulté de tracer des tendances pour des bandes d'apparition sporadique (ex: les marqueurs chimiques X, Xa, Xb, XIV^{*Ca}).

(6) La plupart des tendances des nombres d'onde des pôles (Tab. 3) se trouvent dans les sous-classes 1 et 2 dont le n° 1 correspond à la tendance inverse des rayons ioniques des cations divalents Mg²⁺, Fe²⁺ et Mn²⁺, ce qui laisse penser qu'il existe une influence assez directe de ce paramètre physico-chimique sur les nombres d'onde de certaines bandes Raman; considérant aussi le cation Ca2+ ces correspondances sont encore vérifiées, sauf pour la bande XIII. Ces bandes incluent notamment toutes celles de la zone 1100-750 cm⁻¹ qui concernent les vibrations internes des tétraèdres ZO₄ (bandes I à IV). Il est rappelé que parmi les bandes I à IV des grenats calciques, seule la bande I était corrélée négativement aux rayons ioniques des cations trivalents Y³⁺ (PINET et SMITH, 1993). Plusieurs tendances se trouvent dans les sous-classes 3 et 4 dont le n° 4 inclue notamment les bandes V, VIII et IX qui étaient interprétées comme «marqueurs chimiques» des cations trivalents Y3+ et qui étaient corrélées négativement avec les rayons ioniques et les masses atomiques des cations trivalents Y³⁺ (PINET et SMITH, 1993). La bande XV se distingue par son comportement unique qui suit la séquence et le sens des rayons ioniques des cations divalents.

(7) En spectroscopie Raman, le Pyr se montre le pôle *le plus faible* et donc le plus mauvais pour toute étude théorique sur les grenats naturels ou synthétiques; au contraire l'Alm offre, globalement, le spectre *le plus intense* et le plus complet pour tous les grenats alumineux.

(8) En ce qui concerne la maille des grenats alumineux, elle varie pratiquement *linéairement* avec le nombre d'onde de la bande II pour les trois pôles Pyr, Alm et Spe (cette tendance pouvant être extrapolée vers le pôle Gro) car ces deux paramètres sont indépendamment en corrélation avec la séquence inverse du rayon ionique des cations divalents. Dans le cas de la bande VIII il n'existe pas de telles tendances linéaires car le rayon ionique des cations divalents n'est pas corrélé avec le nombre d'onde Raman.

Références

- BOYER, H., PINET, M. et SMITH, D.C. (1988): The Raman microspectrometry of synthetic garnets in the system pyrope-almandine-grossular: a new technique for the non destructive chemical analysis of garnet micro-inclusions. In: CLARK, R.J.H. et LONG, D.A. (eds). Proceedings of the XI International Conf. on Raman Spectrometry, Section 18.6. John Wiley, London.
- DELANY, J.M. (1981): A spectral and thermodynamic investigation of synthetic pyrope-grossular garnets. Ph. D., University of California, Los Angeles, USA, 175 p.
- GILLET, P., FIQUET, G., MALEZIEUX, J.-M. et GEIGER, C. (1992): High-pressure and high-temperature Raman spectroscopy of end-member garnets: pyrope, grossular and andradite. Eur. J. Mineral., 4, 651–664.
- HOFMEISTER, A.M et CHOPELAS, A. (1991): Vibrational spectroscopy of end-member silicate garnets. Phys. Chem. Minerals, 17, 503–526.
- MOORE, R.K., WHITE, B.W. et LONG, T.V. (1971): Vibrational spectra of the common silicates: I. The garnets. Am. Mineral., 56, 1–2, 54–71.
- PINET, M. et SMITH, D.C. (1993): La microspectrométrie Raman des grenats X₃Y₂Z₃O₁₂: I. La série calcique naturelle ouvarovite-grossulaire-andradite. Schweiz Mineral. Petrogr. Mitt., 73, 21–39.
- SHANNON, R.D. et PREWITT, C.T. (1969): Effective ionic radii in oxides and fluorides. Acta Crystallogr. B25, 925–946.
- SMITH, D.C. et PINET, M. (1989): A method for singlevariable plotting of multi-dimensional chemical data for comparing Raman wavenumbers with chemical variations in solid-solution. GEORAMAN-89: CONTRIBUTIONS, Pub. Spéc. Assoc. Nation. Rech. Tech., Paris, 24.
- SMITH, D.C. et PINET, M. (1993a): Dodecahedral or octahedral exchanges in natural ugrandite or pyralspite garnets observed by Raman Spectroscopy: EUG^{VII} Strasbourg. Terra Nova Abstracts Suppl. n° 1, section D13, 500-501.
- SMITH, D.C. et PINET, M. (1993b): Attributing Raman spectral bands across the almandine-grossular join with a synthetic Alm₅₀-Gro₅₀ garnet. Fourth International Eclogite Conference, Fuscaldo, Terra Nova Abstracts Suppl. n° 4, 24.

Manuscrit reçu le 22 mai 1993; manuscrit révisé accepté le 11 avril 1994.