Mitteilungen des Reussverbandes

Objekttyp: **Group**

Zeitschrift: Schweizerische Wasserwirtschaft: Zeitschrift für Wasserrecht,

Wasserbautechnik, Wasserkraftnutzung, Schiffahrt

Band (Jahr): 12 (1919-1920)

Heft 3-4

PDF erstellt am: 11.09.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Mitteilungen des Reußverbandes

Gruppe des Schweizerischen Wasserwirtschaftsverbandes

Sekretariat des Reussverbandes in Luzern: Ingenieur F. A. von Moos in Luzern.

Erscheinen nach Bedarf Die Mitglieder des Reussverbandes erhalten die Nummern der "Schweiz. Wasserwirtschaft" mit den "Mitteilungen" gratis

Verantwortlich für die Redaktion: Ing. F. A. von MOOS, Sekretär des Reussverbandes in Luzern, Hirschengraben 33 Telephon 699 Verlag der Buchdruckerei zur Alten Universität, Zürich 1 Administration in Zürich 1, St. Peterstrasse 10 Felephon Selnau 224. Telegramm-Adresse: Wasserwirtschaft Zürich

Die Frage der Fortbewegung der Kähne bei der Flußschiffahrt im Reussgebiet.

Von F. A. von Moos, Luzern.

Für die Fortbewegung der Frachtkähne kommen verschiedene Möglichkeiten in Betracht:

- 1. Die Schleppschiffahrt, mit Schleppdampfer und einem oder einer Anzahl angehängter Kähne, welche mit den zu transportierenden Gütern beladen sind.
- 2. Der Einzelfahrer, wobei der Fortbewegungsmechanismus, sei es eine Dampfanlage, oder ein Gas-, Öl- oder Elektromotor, im Lastschiff eingebaut ist.
- 3. Die Treidelei, bei welcher der Frachtkahn vom Lande aus geschleppt wird, und endlich
- 4. Die Kettenschiffahrt, wo der Kahn sich durch ein auf ihm befindliches Triebwerk an einer am Ufer oder im Wasser befestigten Kette vorwärts windet.

Üeber die ersten beiden Fahrmethoden hat sich Herr Schiffsbauingenieur Adolf J. Ryniker in einer sehr bemerkenswerten Studie im Jahrbuch des Nordostschweizerischen Verbandes für Schiffahrt Rhein-Bodensee in St. Gallan für das Jahr 1916 verbreitet. Der Verfasser jener Schrift beleuchtete diese beiden Arten der Fortbewegung für unsere Flußschiffahrt von der fahrtechnischen sowie ökonomischen Seite und kam am Schlusse seiner interessanten Entwicklung zur Überzeugung, dass auf unsern Gewässern der Motorkahn oder Einzelfahrer dem Schleppzuge überlegen sei, immerhin könnte auch dem Motorkahn noch ein Anhängekahn beigegeben werden, wo dies die Gewässerstrecke erlaube.

Für die Frachtenführung, so schreibt Herr Ingeneur Ryniker, kommt in unsern Gewässern eigentlich nur die Schleppschiffahrt und die Schiffahrt mittelst des Einzelfahrers oder Güterbootes ernstlich in Frage. Er bezieht nun seine Berechnungen hauptsächlich auf die Rheinstrecke Basel-Strassburg und vergleicht dieselbe als Gegensatz mit dem Unterlaufe des Rheinstroms.

Herr Ryniker macht also seine Ansprüche betreffend der Ökonomie des Schleppzuges gegenüber dem Einzelfahrer nur bis an die Peripherie unseres Landes geltend.

Steigen wir nun aber noch eine Etappe weiter hinauf und betrachten den Flusslauf, welcher zur Alimentierung der Zentralschweiz berufen ist, so finden wir hier von Abschnitt zu Abschnitt sich verändernde Verhältnisse, welche die Anwendung einer einheitlichen Formel verbieten.

Was Herr Ingenieur Ryniker für die Strecke Strassburg-Basel als das Richtige erkannte, wird zweifellos in erhöhtem Masse für den Abschnitt Basel-Aaremündung (Koblenz) geltend gemacht werden können. In erhöhtem Masse schon deshalb, weil bereits einzelne Gefällsstufen in Schleusen zu überwinden sind; denn das Passieren einer Schleuse durch einen Schleppzug ist mit ungleich grösserem Zeitverlust verbunden, als durch Einzelfahrer von gleicher Nutztonnage.

Von der Aare und besonders der Reuss an aufwärts wird die Anwendung des Schleppzuges dadurch ganz ausser Frage gestellt, dass infolge der geringeren Wasserquantitäten die Schleusendimensionen auf ein Minimum reduziert werden müssen. Eine Schleuse für einen 1000 T. Kahn bei einer Hubhöhe von 7 m honsumiert für eine Schleusung ca. 6600 m³, eine solche für einen 350 PS. Schlepper mit 1000 T. Kahn 9700 m³ Wasser. Bei Mellingen, also nicht weit von ihrer wasserreichsten Stelle, führt die Reuss im Winter ca. 40 m³/sek. Um allein diese Differenz auszufüllen, würde der ganze Zufluss während 78 Sekunden benötigt. Für die Füllung einer Schleusenkammer mit 6600 m³ würde der gesamte Zufluss von 165 Sekunden nötig und 9700 m³ erforderten eine Füllungszeit von 243 Sekunden. Man würde in solchen Fällen die Füllungszeiten derart ausdehnen, dass der Kraftwerkbetrieb eine allzu störende Reduktion nicht erfahren müsste. Aber da dennoch jeder Tropfen Wasser in der wasserarmen Zeit in Energie umgesetzt wird, so ist es von allergrösster Wichtigkeit, die Schleusungsverluste nach Möglichkeit zu reduzieren. Damit wird nun die Schleppschiffahrt auf den Flußstrecken in Anbetracht der grossen Rampen als nicht existenzberechtigt zu betrachten sein und kommt also nur der Einzelfahrer in Betracht. Es frägt sich nun aber, soll derselbe als Selbstfahrer oder als Treidelfahrzeug ausgebildet werden. Man hat hiebei zwei Kategorien von Flussstrecken zu berücksichtigen. Der eingestaute natürliche Flusslauf und der Werkkanal. Der grössere Teil an der Reuss wird sich nun für die Schifffahrt nutzbar auf den Kraftwerkkanal verteilen. In diesem Fahrwasser ist nun aus folgenden Gründen das Treidelfahrzeug dem Selbstfahrer vorzuziehen: Die relativ geringe Tiefe im Kanal, welche von 4 m bis auf 2,5 m hinuntersinkt, verringert dadurch den Nutzeffekt des Selbstfahrerantriebes. Durch denselben werden aber gleichzeitig Wellenbewegungen und Strömungen hervorgerufen, welche schädlichen Einfluss durch Anspülungen an den Ufern in lockerem und angeschüttetem Terrain haben. Es werden aber auch gleichzeitig kleine Sinkstoffe aufgewirbelt und damit den Turbinen zugeführt und dieselben dadurch schädigend beeinflusst. Das Treidelfahrzeug dagegen ist mit diesen Fehlern nicht behaftet. Es soll damit aber nicht gesagt werden, dass der Selbstfahrer ausgeschaltet werden sollte, im Gegenteil, er wird in andern Wasserläufen unentbehrlich bleiben. Dagegen hat der Treidelbetrieb den Nachteil, dass ein Treidelweg der Kanalanlage entlang erstellt werden muss. Mit wenigen Ausnahmen, etwa da, wo der Kanal einen tiefen Einschnitt durchfährt, ist eine solche Anlage mit geringen Mehrkosten verbunden. Als Triebmittel wäre elektrische Traktion, ähnlich wie sie bei den Schleusen des Panamakanals ausgeführt ist, vorzusehen. Ein elektrischer Traktor auf Rollbahnschienenweg und mit Oberleitung hätte den Lastkahn durch den Kanal zu schleppen. Die benötigte elektrische Energie wäre jeweilen von demjenigen Kraftwerk abzugeben, dessen Kanal durchfahren würde. Diese könnte während 8 Monaten als Abfallkraft zu einem Preise von 4 Cts/kWh. und während 4 Monaten zu 10 Cts/kWh., also zu einem Durchschnittspreise von 6 Cts/kWh. abgegeben werden.

Die Kettenschleppschiffahrt hätte gegenüber der Treidelei noch den Vorteil, dass eine grössere Anlage seitlich des Kanals vermieden werden könnte und dass als Antrieb gleichzeitig der Motor des Selbstfahrers auf das Kettentriebwerk umgeschaltet werden kann.

Im eingestauten Flusslaufe nun wird die Treidelei durch eine im allgemeinen unregelmässig verlaufende Uferlinie und die Kettenschiffahrt durch die Geschiebeführung verunmöglicht. Dagegen tritt hier wiederum der Selbstfahrer in seine vollen Rechte ein. Besondere Beachtung verdient nun die Flußschiffahrt auf den Seen, dem Zugersee und dem Vierwaldstättersee. Infolge der relativ kurzen Distanzen auf dem Zugersee — Strecke Cham-Immensee — dürfte auch hier nur mit Einzelfahrern gerechnet werden. Es könnte aber auch — gerade infolge der kurzen Strecken - eine Art Verschubdienst eingerichtet werden. Anders dagegen auf dem Vierwaldstättersee, wo den Schiffen der Dampfschiffgesellschaft des Vierwaldstättersees, besonders den gütertransportierenden, Schleppkähne angehängt werden können, doch auch hier ist die Aufstellung eines Schemas nicht ratsam, sondern je nach der Entwicklung von Fall zu Fall sich zu orientieren.

Über die Art und Weise der Krafterzeugung für die Fortbewegung der Kähne sind verchiedene Vorschläge gegeneinander zu erwägen. Hiebei wollen wir auf den Schlepper, aus oben angeführten Gründen nicht mehr zurückkommen. Dagegen dürfte der Selbstfahrer einer einlässlicheren Betrachtung gewürdigt werden. Als Propulsionsenergie kann Verwendung finden Dampf, Gas, Öl oder Elektrizität. Für den Dampfbetrieb sind zwei Fälle zu unterscheiden: Die normale Dampfkraftanlage, welche für einen Dampfdruck von 12-18 Atm. bestimmt ist, dürfte aus dem Grunde verwerflich sein, weil infolge der Kesselanlage ein allzu grosses totes Gewicht auf Kosten der Nutzlast mitgeschleppt werden muss. Auch ist hier der calorische Nutzeffekt gleichviel, ob Kohlenoder Ölfeuerung angewandt wird, derart klein, dass aus diesem Grunde einer solchen Anlage keine weitere Beachtung zukommen kann. Hinsichtlich des toten Gewichtes bedeutend günstiger wäre die Dampfmaschine mit sehr hohem Admissionsdruck (40 bis 45 Atm.), wie sie heute noch in einigen der Pariser Autobusse in Betrieb ist. Hier ist infolge engen Zusammenbaues, Ausschalten aller Zwischenglieder und der kleinen Dimensionen des Dampfkessels und des Cylinders der Raumbedarf und das Gewicht auf ein Minimum beschränkt. Dagegen dürfte in bezug auf Brennstoffverbrauch dasselbe gelten, wie bei der normalen Dampfmaschine und somit auch dieses Propulsionselement keiner weitern Untersuchung unterworfen werden müssen. Gas- und Ölmotor sind ungefähr auf die gleiche Stufe zu stellen. Das tote Gewicht sowie der relativ hohe kalorische Wirkungsgrad sind bei beiden ungefähr gleich. Die Wirtschaftlichkeit hängt hiebei nur von der Beschaffung des Brennstoffes ab. Darüber lassen sich in der gegenwärtigen unbestimmten Zeit nur Vermutungen anstellen.

Das Material für den Betrieb des Explosionsmotors oder Gasmotors geht vorwiegend als Benzin, Naphta, Benzol etc. aus der Leuchtgasindustrie hervor und ist somit mehr oder weniger direkt von der Produktion der Kohlenbergwerke abhängig. Beim Verbrennungs- oder Olmotor (Diesel) wird das schwere Rohöl aus den russischen, galizischen und amerikanischen Ölgebieten verwendet. In dieser Beziehung wären wir gegenwärtig ganz von den überseeischen Ölzentren und zum grossen Teil von ebendenselben Kohlenlagern abhängig. Es ist auch noch gar nicht möglich vorauszusehen, wie lange es dauern wird, bis sich die Welthandelslage derart konsolidiert hat, dass wir mit Bestimmtheit Brennstoff in genügender Menge und zu einem Preise, welcher die Wirtschaftlichkeit der Anlage nicht ausser Frage setzt, erhalten können. Mit andern Worten: Unsere Flußschiffahrt wäre wiederum ganz vom Auslande abhängig.

(Fortsetzung folgt.)