Zeitschrift:	Wasser- und Energiewirtschaft = Cours d'eau et énergie
Herausgeber:	Schweizerischer Wasserwirtschaftsverband
Band:	53 (1961)
Heft:	6-7
Artikel:	Sondages, injections et traitement du sous-sol
Autor:	Rambert, O.
DOI:	https://doi.org/10.5169/seals-920755

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 02.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ment d'un très grand nombre d'ouvriers étrangers, la plupart des italiens, soit 70 à 90 % de la main-d'œuvre. Dans le domaine des installations de transport et de chantier, de grands progrès ont été réalisés et d'ingénieuses solutions trouvées. Depuis une douzaine d'années, le ciment est transporté dans des récipients spéciaux, méthode qui fut appliquée pour la première fois, sauf erreur, pour les chantiers de San Giacomo di Fraële et de Pieve di Cadore, en Italie; les Chemins de fer fédéraux suisses et certains chemins de fer privés ont construit des wagons spéciaux pour le transport du ciment, qui peut être ainsi amené de la fabrique aux endroits de transbordement principaux, d'où il est pompé dans des silos, puis acheminé aux chantiers par camions ou téléfériques. Certains chantiers de grands barrages (Albigna, Limmern) ne sont desservis que par des téléfériques, même pour les transports de pièces lourdes. Pour les prospections et les premiers travaux d'installation, on a déjà utilisé avec succès des hélicoptères à des emplacements très écartés et difficilement accessibles. Enfin, il a fallu construire de nouvelles routes, souvent très longues, ou élargir des chemins, ce qui a d'heureuses répercussions pour l'économie publique de vallées autrefois peu fréquentées.

Depuis 1950 environ, on a introduit en Suisse des engins de grande puissance, comme ceux utilisés aux Etats-Unis, en particulier pour la construction des grands barrages élevés en terre, tels que Castiletto/Marmorera (1950/55), Göscheneralp (1955/60) et Mattmark (1961/67).

Les articles qui suivent donnent d'intéressants renseignements sur les problèmes et travaux spéciaux de la construction des barrages, ainsi que sur certains ouvrages particulièrement remarquables de ces vingt dernières années, notamment les barrages les plus récents.

Sondages, injections et traitement du sous-sol

par O. Rambert, directeur-adjoint, et M. Gavard, ingénieur, Electro-Watt, Zurich

CDU 550.8 + 624.138

Avec la multiplication des barrages et des digues et aussi à cause de la tendance de construire ces ouvrages toujours plus gigantesques, le problème des fondations a pris une importance croissante et sa solution est devenue une véritable science aux techniques constamment revues et améliorées. Cet article se propose de faire le point du stade actuellement atteint en Suisse dans ce domaine, plus particulièrement à la lumière des expériences faites pour les quatre ouvrages dont les caractéristiques principales sont rassemblées dans le tableau 1.

1. Sondages

La nature et le comportement des fondations d'un barrage ou d'une digue sous l'effet des charges supplémentaires auxquelles elles seront soumises, sont deux points primordiaux qui retiennent dès le début l'attention des auteurs d'un projet. Les campagnes de reconnaissance ont précisément pour but de les déterminer dans les plus brefs délais, car de leurs résultats dépendent le type et la rentabilité des ouvrages.

Cette première étape recourt aux relevés géoélectriques et sismiques, aux sondages à percussion dans les alluvions fines à moyennes et aux forages à percussion et rotation dans les alluvions contenant des blocs et dans le rocher (fig. 6); malgré la fréquente précarité initiale des voies d'accès, qui nécessite souvent des transports à dos de mulet ou par hélicoptère, elle permet d'établir avec le concours du géologue, du pétrographe, du géophysicien et du mécanicien des terres, un relevé des propriétés mécaniques et physiques du sous-sol, tant dans les alluvions que dans le rocher.

Ces études ont évidemment une ampleur variable d'un ouvrage à l'autre et qui s'intensifie au fur et à mesure que les résultats qu'elles fournissent encouragent à les poursuivre; elles représentent approximativement 3,0, 1,1, 0,8 et 1,1 % des travaux de génie civil sans les ouvrages annexes respectivement pour Marmorera-Castiletto, Mauvoisin, Göscheneralp et Mattmark.

2. Injections et traitement du sous-sol

Les sondages et travaux de reconnaissance mettent généralement en évidence la nécessité d'un traitement des fondations, car des conditions topographiques favorables à l'établissement d'un barrage ne vont pas nécessairement de pair avec des conditions géologiques idéales. On a par conséquent recours à des techniques devant, soit imperméabiliser le sous-sol, soit le consolider, soit encore combiner une consolidation avec un étanchement. Dans le premier cas, c'est dans le rocher un rideau ou un voile d'injection, dans les matériaux pulvérulents un diaphragme de béton, de palplanches ou une coupure étanche. Le rideau d'injection se distingue de la cou-

Tableau 1

Nom	Туре	Hauteur maximum (m)	Longueur du couronnement (m)	Largeur du couronnement (m)	Largeur de la base (m)	Volume (Mio m³)	Année de première mise en eau totale
Marmorera-Castiletto Mauvoisin Göscheneralp Mattmark	Digue en terre Barrage-voûte Digue en terre Digue en terre	91 237 155 115	400 520 540 780	12 14 11 11	$440 \\ 53,5 \\ 700 \\ 373$	2,70 2,03 9,35 10,00	1954 1958 1961 1967

pure étanche par l'épaisseur du traitement qui s'effectue sur une seule rangée pour le premier et par la nature des injections. Quant aux injections de consolidation, elles concernent le rocher et s'effectuent de préférence après la construction de l'ouvrage, donc en général à partir de galeries percées à cet effet, en éventail à cause de la nécessité de traiter des surfaces étendues sous de faibles pressions.

Le coût des injections et du traitement du sous-sol avec les galeries d'injection et les différentes cavernes représente environ 32, 5, 7 et 19 % du génie civil sans les ouvrages annexes respectivement pour Marmorera-Castiletto, Mauvoisin, Göscheneralp et Mattmark.

2.1. Marmorera-Castiletto

L'appui de cette digue est le rocher en place constitué de schistes verts avec un banc de serpentine sur rive droite et des alluvions et dépôts morainiques recouverts d'un important cône d'éboulis sur rive gauche; ce dernier se compose principalement de serpentine et de ses dérivés. L'hétérogénéité de ces fondations a conduit à prévoir 3 différents dispositifs d'étanchement: jusqu'à la cote 1638 un diaphragme de béton pour les alluvions et dépôts morainiques, en dessus de cette cote une coupure étanche pour le cône d'éboulis et un rideau d'injection pour tout le périmètre rocheux de l'appui.

Fig. 1 MARMORERA-CASTILETTO Excavations d'une cellule du diaphragme en béton Aushubarbeiten in einer Zelle des Betondiaphragmas Excavation of a cell of the concrete diaphragm (Photo Brügger)

Fig. 2 MARMORERA-CASTILETTO Manutentions des matériaux du diaphragme de béton dans une galerie horizontale

Transporteinrichtung im Horizontalstollen des Betondiaphragmas

Transport of materials for the concrete diaphragm in a horizontal tunnel (Photo Steiner)

2. 1. 1. Le diaphragme de béton a été foncé vers le bas par le procédé cellulaire à partir des galeries 1612 et 1638, son épaisseur théorique est de 2,0 m (fig. 1 et 2). Les dimensions intérieures des cellules étaient de 2.5 · 1.4 m², l'épaisseur des parois de 30 cm et l'épaisseur des tranches d'excavation de 1,30 m. L'excavation d'une tranche était immédiatement suivie de son bétonnage. Dans la partie inférieure du diaphragme l'épuisement de l'eau était assumé par 13 forages débouchant dans les galeries de drainage 1595 et 1573; cette mesure s'avéra cependant insuffisante dans la partie la plus basse où il fut nécessaire de battre des palplanches à partir des cellules sur les 12 derniers mètres. Le diaphragme a été ainsi descendu progressivement jusqu'au rocher, ses parois extérieures ont alors été soigneusement injectées pour les solidariser avec le terrain, puis l'intérieur des cellules a été bétonné de bas en haut en ménageant, pour certaines d'entre elles, des puits de contrôle à faible section. Pour éviter que les tassements sollicitent trop le système, un coussin argileux a été intercalé entre le toit de la galerie 1612 et la partie supérieure du diaphragme. Cette dernière a été exhaussée à l'air libre de quelques mètres par rapport au terrain afin de prolonger sur les éboulis le mur-parafouille longeant le rocher rive droite de la zone du noyau.

Le diaphragme de béton a une surface totale de 17700 m^2 ; avec les galeries son coût s'est monté à 7 millions de francs, à savoir environ 400 fr./m².

DIGUE EN TERRE DE MARMORERA-CASTILETTO

fer mit ein
echten Uf
n, Morâne
collen 157
tollen 159
512
38
584
schleier
hragma
inung des
der größte
il a h d

ER	DDAMM MARMORERA-CASTILETTO		
1	Grünschiefer mit einem Serpentinzug	0	Injektionsschirm
	auf dem rechten Ufer	00	Abdichtungssporn aus Beton
2	Alluvionen, Moränen und Bergschutt	02	Bergseitige Blockschüttung
3	Drainagestollen 1573	03	Bergseitiger Stützkörper
4	Drainagestollen 1595	0.0	Bergseitiger Filter
3	Stollen 1612	(3)	Kern
6	Stollen 1638	60	Talseitiger Filter
0	Stollen 1684	1	Talseitiger Stützkörper
(8)	Injektionsschleier	(8)	Talseitige Blockschüttung
9	Petondiaphragma		

Um die Anordnung des Betondiaphragmas darzustellen, wurde der Dammquerschnitt nicht am Ort der größten Höhe gezeichnet.

na 1680 m	0 00 0
	3
	O-
	A CONTRACTOR OF THE OF
- ant	0

EARTHFILL DAM MARMORERA-CASTILETTO

0	Green schists with serpentine intercalation	0	Cut-off grouting curtain
	on the right river bank	0	Cut-off concrete wall
2	Alluvial, moraine and talus materials	0	Upstream rip-rap
3	Drainage tunnel 1573	0	Upstream shell
Ð	Drainage tunnel 1595	04	Upstream filter
Ō.	Tunnel 1612	3	Core
6	Tunnel 1638	00	Downstream filter
Ď	Tunnel 1684	0	Downstream shell
(8)	Grouting curtain	08)	Downstream rip-rap
ō.	Concrete diaphragm	-	

MARMORERA-CASTILETTO

(Photo: Militärflugdienst)

MAUVOISIN

(Photo: Electro-Watt

BARRAGE-VOUTE DE MAUVOISIN

0	Schistes lustrés
2	Galerie d'injection 1724
3	Galerie d'injection 1885
4	Rideau d'injection
3	Injections secondaires

1961 S m		1962 m		
500, 1800 m	0			max. 237 m
The Contraction of the Contracti	TIT THE STATE	manna	menennen	7 1
	(2)	53,5 m		
		-		
	(1)	(1)		

BOGENMAUER MAUVOISIN ARCH DAM MAUVOISIN

- Schists
 Grouting gallery 1724
 Grouting gallery 1885
 Grouting curtain
 Secondary grouting
- D Bündner Schiefer
 D Injektionsstollen 1724
 D Injektionsstollen 1885
 Injektionsschleier
 Sekundärinjektionen

contrainer the ford of States and the second and and the same the Market of the

540 m

DIGUE EN TERRE DE GÖSCHENERALP

DIGUE EN TERRE DE GOSCHENERA Granit de l'Aar Alluvions Galerie d'injection Rideua d'injection Galerie annot Masse de stabilisation de la recharge Recharge Perré de protection amont Corps amont de la digue

Couche de transition amont Fitre amont Noyau Biocage du couronnement Fitre aval Couches de transition aval Couches de transition aval Corps aval de la dique Perré de protection aval

ERDDAMM GÖSCHENERALP

O Aregranit
 Aregranit
 Alluvionen
 Injektionsstollen
 Injektionsstollen
 Bergseitiger Darinaeterppich
 Süürkörper der Auflast
 Auflast
 Bergseitige Blockschütung
 Bergseitiger Stürkörper

O O		S S S S S S S S S S S S S S S S S S S
0	<u>.</u>	

EARTHFILL DAM GOSCHENERALP EARTHFILL DAM GOSCHENER Granite of the Aar Alluvial materials Grouting tunnel Grouting curain Upstream drainage blanket Shell for stabilizing the load Load Upstream rip-rap Upstream shell

Upstream transition layer
 Upstream filter
 Core
 Forective cladding on crown
 Downstream filter
 Downstream transition layers
 Downstream transition layers
 Downstream shell
 Downstream shell

DIGUE EN TERRE DE MATTMARK

1	Roches cristallines: gneiss, granits, prasinites	10	Perré de protection amont
2	Dépôts quaternaires	0	Couche de drainage amont
3	Moraine latérale sud du glacier d'Allalin	0	Filtre amont
4	Galerie de drainage	13	Noyau
3	Galeries d'injection	(4)	Blocage du couronnement
۲	Coupure étanche	(3)	Filtre aval
0	Rideau d'injection	6	Couche de drainage aval
3	Corps du pied amont	1	Corps de la digue
9	Chemise de drainage	3	Perré de protection aval
La	coupe longitudinale est brisée aux lignes — · —		

ERDDAMM MATTMARK

(Photo: E. Brügger)

1	Kristalline Gesteine: Gneis, Granit, Prasinit	0	Bergseitige Blockschüttung
2	Quartär-Ablagerungen	0	Bergseitige Drainageschicht
3	Südliche Seitenmoräne des Allalingletschers	02	Bergseitiger Filter
4	Drainagestollen	1	Kern
5	Injektionsstollen	60	Blockhaube
6	Injektionsschirm	1	Talseitiger Filter
0	Injektionsschleier	09	Talseitige Drainageschicht
8	Stützkörper des bergseitigen Dammfußes	0	Stützkörper
3	Sickerpackung	1	Talseitige Blockschüttung
De	r Längsschnitt ist bei der Linie — · — gebrochen		

CARTHEUL DAM MATTMARK

1	Crystalline rocks: gneiss, granite, prasinite	0	Upstream rip-rap
2	Quaternary deposits	00	Upstream drainage layer
3	South lateral moraine of Allalin glacier	0	Upstream filter
Ð	Drainage tunnel	(13)	Core
3	Grouting tunnel	(4)	Protective cladding on crown
3	Cut-off grouting curtain	05	Downstream filter
D	Grouting curtain	60	Downstream drainage layer
8	Shell of the upstream foot of the dam	Ø	Shell
D	Drainage layer	(1)	Downstream rip-rap

2.1.2. La coupure étanche a été exécutée à partir des galeries 1638, vers le haut, et 1684, vers le bas. Les forages à rotation avec carottage, \emptyset 65, 55 et 45 mm, au moyen de trépans en métal convenaient aux éboulis traversés, de sorte qu'il ne fallut recourir qu'exception-nellement aux couronnes diamant pour des blocs particulièrement durs. Le forage en tranches de 4 à 5 m immédiatement suivi de l'injection permit dans la plupart des cas d'éviter les tubages.

Le coulis d'injection était constitué par un gel d'argile additionné de ciment et stabilisé chimiquement. Le pourcentage en poids argile: ciment variait de 1 pour les réseaux fins à 20 pour les zones caverneuses. Le dosage de matière sèche variait de 205 à 425 kg/m³ coulis suivant les mélanges, ce qui donnait des coulis avec une densité apparente de 1,12 à 1,25 t/m³. Après l'injection d'une passe, les travaux étaient interrompus 24 heures au moins afin d'éviter une dislocation du coulis et en permettre sa prise, puis l'on procédait au forage d'une nouvelle passe et l'on injectait à nouveau toute la longueur forée. Les pressions d'injection variaient entre 0 et 18 at suivant les distances entre la passe considérée, la surface du terrain et les galeries. La perméabilité était déterminée de même par des injections d'eau sous 5 et 10 at en faisant l'hypothèse que les tronçons injectés antérieurement étaient étanches. Les zones superficielles du cône d'éboulis se sont d'emblée révélées beaucoup plus perméables que les zones profondes; dans le tableau 2 qui résume l'exécution de la coupure étanche, l'espacement des forages dans ces zones est indiqué entre parenthèses.

Les forages étaient en principe verticaux dans le sens longitudinal de la coupure, mais dans la zone profonde du cône d'éboulis dont la perméabilité naturelle est faible, ils ont été partiellement inclinés afin d'augmenter leur surface d'action.

Fig. 3 MARMORERA-CASTILETTO Forage pour les injections de consolidation au voisinage du parafouille Bohrung für die Konsolidationsinjektionen beim Abdichtungssporn Drilling for consolidation groutings in the vicinity of the cut-off wall (Photo Brügger)

Opéra- tion	Caractéristique	Unité	De la galerie 1638			De la galerie 1684	
			Phase 1	Phase 2	Phase 3	Phase 1	Phase 2
Forages	Nombre de rangées		1 aval puis 1 amont	1 aval puis 1 amont	1 médiane	1 aval puis 1 amont	1 médiane
	Inclinaison des rangées par rapport à la verticale	%	69	9,5 resp. 12,5	1,5 (amont)	10	0
	Espacement des forages	m	4 (2)	4 et + (2)	4 et + (2)	4	4 (2)
	Longueur théorique de chaque forage	m	9	22,5	22,5	24	24
	Longueur forée totale	m	1443	3094	1911	2647	2676
Injec- tions	Absorption moyenne de coulis	m³/m	0,841	1,082	0,724	1,073	0,705
		m³/m	0,922			0,888	
Essais de permé- abilité	Absorption moyenne d'eau avant injection dans les forages pilotes exécutés tous les 24 m	l'm • min	5,2 (5 at) 9,2 (10 at)			4,2 (5 at) 9,2 (10 at)	
	Absorption d'eau après injection des forages de la dernière phase	l/m · min	0,6-1,2 (5 at) 0,8-1,4 (10 at)				

Tableau 2

Nr. 6/7 1961

Fig. 4 MAUVOISIN Centrale d'injection en caverne Unterirdische Injektionszentrale Underground grouting central station (Photo Darbellay)

La coupure étanche a une surface de 10 500 m²; elle a nécessité 11 771 m de forages dont l'absorption moyenne en coulis fut de 0.9 m³/m, à savoir environ 1 m³/m². Avec les galeries son coût s'est monté à 2,6 millions de francs, à savoir environ 250 fr./m².

2. 1. 3. Le rideau d'injection a été réalisé avant la mise en place des matériaux de la digue. Il a été exécuté sur la rive droite à ciel ouvert en prolongement du murparafouille de béton avec lequel il assure l'étanchement de la délicate zone de contact entre le rocher et la digue (fig. 3), sur la rive gauche à partir de l'extrémité inférieure des cellules. Ses 195 forages d'une longueur totale de 3470 m étaient en principe verticaux avec un espacement de 3 m et une longueur de 15 à 20 m; ils balayent une surface de 7300 m² dont l'absorption moyenne en coulis a été de 245 kg ciment/m ou 116 kg ciment/m². Le coût du rideau s'est monté à 0,9 millions de francs, à savoir 123 fr./m².

2.2. Mauvoisin

Le rocher d'assise du barrage de Mauvoisin est constitué par des schistes lustrés comprenant essentiellement des calcschistes plus ou moins siliceux en bancs, alternant avec des zones schisteuses argilo-charbonneuses. Bien qu'il ait été en général homogène et compact et que sa surface n'ait pas été altérée sur plus de 1 ou 2 m, les travaux de reconnaissance mirent en évidence, surtout dans le thalweg, une perméabilité relativement élevée d'en moyenne 14 l/m • min. Cette situation nécessita d'importants travaux d'étanchement qui se subdivisent en 3 catégories: le rideau d'injection, les injections secondaires et les injections de consolidation. Par le fait que ces travaux chevauchaient avec les excavations et le bétonnage du barrage et qu'il était économique de pouvoir les poursuivre durant l'hiver, ils ont été entièrement exécutés en caverne, à l'exception d'une partie des injections de consolidation. Cette méthode de travail a nécessité le percement de 943 m de galeries d'injection.

Le coulis était préparé avec du ciment Portland stabilisé par une adjonction de 0,5 à 2 % de bentonite dans une centrale d'injection en caverne (fig. 4).

De manière générale, les forages étaient perforés d'emblée à la profondeur finale, puis injectés à partir de l'extrémité par passes de 3 à 5 m au moyen d'un obturateur.

2.2.1. Le rideau d'injection, dit aussi voile principal, est incliné de 19 % sur la verticale afin d'assurer un meilleur recoupement des fissures; il a pour but d'assurer l'étanchéité des roches d'assise du barrage en dessous et sur les côtés de celui-ci et, accessoirement, de contribuer à leur consolidation. Il a été exécuté en 5 phases vers le haut et vers le bas à partir des galeries d'injection 1724 et 1885 jusqu'à une profondeur de 220 m sous le pied du barrage et jusqu'à une distance de 200 m au large de ses culées (fig. 5).

Tableau 3

Caractéristique	Unité	En dessous de la galerie 1724	Entre les gale- ries 1724 et 1885 rive gauche	Entre les gale- ries 1724 et 1885 rive droite	En dessus de la galerie 1885 rive gauche	En dessus de la galerie 1885 rive droite	Ensemble
Longueur forée Surface injectée Absorption de ciment	${f m}^2 \ {f kg}/{f m} \ {f kg}/{f m}^2$	$\begin{array}{c} 29 \ 051 \\ 124 \ 000 \\ 101 \\ 23,5 \end{array}$	$9\ 351\ 51\ 000\ 209\ 38,4$	8 028 48 000 234 39,2	2 514 14 500 239 41,7	$ \begin{array}{r} 1 \ 937 \\ 9 \ 500 \\ 360 \\ 73,4 \end{array} $	50 881 247 000 158 32,6

Fig. 5 MAUVOISIN Exécution des forages pour le rideau d'injection Ausführung von Injektionsbohrungen für den Dichtungsschleier

Drilling for the grouting curtain

(Photo Brügger)

- La première phase pour le forage-carottage de trouspilotes de 65 mm de diamètre, espacés de 36 m, avec essai d'absorption d'eau par passes ascendantes de 3 m à l'aide d'un double obturateur et sous des pressions de 10, 20 et 30 at. Ensuite injection de coulis sous une pression maximum de 60 at. Cette première phase en révélant une absorption moyenne d'eau de 5,4 l/m • min. sous 10 at a permis d'arrêter l'étendue des suivantes.
- La deuxième phase pour les forages intermédiaires de 45 mm de diamètre, exécutés entre les trous-pilotes avec un écartement de 12 m.
- La troisième phase pour les forages complémentaires intercalés entre les forages des phases précédentes et réduisant l'intervalle à 6 m. Les deuxième et troisième phases étaient exécutées sans carottage ni essai d'eau.
- La quatrième phase pour les forages inclinés de contrôle avec un diamètre de 65 mm qui, en recoupant les autres, vérifiaient l'imperméabilité du rideau. Leur nombre et leur inclinaison variaient en fonction des observations faites au cours des premières phases.
- La cinquième phase comportait des forages supplémentaires au voisinage des galeries et dans les zones où les forages de contrôle avaient révélé un traitement insuffisant, c'est-à-dire où les pertes d'eau sous 10 at étaient encore supérieures à 1 l/m • min. lors des essais de perméabilité.

Les caractéristiques du rideau d'injection sont récapitulées dans le tableau 3.

Avec les galeries d'injection, le coût du rideau d'injection s'est monté à 6,2 millions de francs, à savoir environ 25 fr./m².

2. 2. 2. Les injections secondaires sont destinées à assurer la liaison du barrage avec le rideau principal qu'elles recoupent à 40 m de profondeur et renforcent dans la zone de gradient hydraulique maximum. Elles ont été exécutées soit à partir de la galerie inférieure d'injection, soit à partir de la galerie de drainage courant le long de la fondation, en éventail dans des plans verticaux perpendiculaires au rideau principal et venant s'intercaler entre les forages de ce dernier. L'espacement de ces éventails était donc en général de 6 m, dans les

Fig. 6 GÖSCHENERALP Forage de reconnaissance à percussion dans les alluvions de Göscheneralp (ϕ 120 — 28 cm)

Sondierbohrung in den Alluvionen der Göscheneralp (Schlagbohrung ϕ 120 — 28 cm)

Percussion drilling for investigating alluvial materials at Göscheneralp (dia. 120 – 28 cm) (Photo Brügger)

zones renforcées de 3 m, et la longueur des forages variait de 20 à 65 m. La pression maximum d'injection variait de 20 à 60 at selon la position de la passe considérée.

Les injections secondaires totalisent 15267 m de forages qui, projetés sur le rideau principal, représentent une superficie de 25000 m²; les absorptions moyennes de ciment furent de 74 kg/m ou 45 kg/m².

2.2.3. Les injections de consolidation visent à renforcer le rocher dans la zone la plus sollicitée des fondations, au pied aval du barrage, sans toutefois étancher cette partie. Les forages, disposés en éventail tous les 3 à 6 m dans des plans perpendiculaires à la surface du rocher, avaient des longueurs de 10 à 15 m, exceptionnellement dans le thalweg 30 m; dans la partie inférieure ils étaient exécutés à partir de la galerie du pied aval du barrage, dans la partie supérieure depuis l'extérieur. La pression d'injection était limitée à 5 at, respectivement 10 at pour les forages de 30 m. Les injections de consolidation ont nécessité 9763 m de fo-

Fig. 7 MATTMARK

Essai de consolidation des couches sableuses superficielles par le procédé de vibration

Versuch zur Verdichtung der oberflächlichen Sandschichten nach dem Rütteldruckverfahren

Consolidation test of sandy top layers by vibration method

(Photo Brügger)

rages, ce qui représente le traitement d'une surface verticale d'environ 10 000 m² avec une absorption moyenne en ciment de 38 kg/m ou 37 kg/m².

2.3. Göscheneralp

Le granit de l'Aar constitue le rocher d'assise de la digue; dans le thalweg il a été décapé des dépôts qui le recouvraient afin d'assurer une liaison convenable avec le matériel du noyau. Si ce rocher est irréprochable du point de vue résistance, il est par contre réputé relativement perméable car il présente de vastes réseaux de failles et fissures qu'il est nécessaire de rompre pour garantir l'étanchéité. Un triple traitement a été conçu dans ce but: ce sont le rideau d'injection, les injections de consolidation et les injections de contact. Le pied amont du noyau a d'autre part été renforcé dans le fond du thalweg par des injections en terrain meuble.

A l'exception d'une partie des injections de contact et des zones voisines du couronnement, les travaux furent exécutés depuis la galerie d'injection.

2.3.1. Le rideau d'injection est vertical et s'étend jusqu'à 180 m sous le thalweg; sa justification est la même que pour celui de Mauvoisin, quant à sa particularité, elle consiste en l'utilisation de coulis mixtes à base de ciment Portland et d'argile. La mise en place du noyau nécessitait en effet l'adjonction d'argile pulvérulente provenant du cours inférieur de l'Aar afin d'obtenir les caractéristiques de perméabilité requises; il y avait donc de puissantes installations de transport et de stockage d'argile, ce qui rendait l'emploi de celle-ci pour les injections particulièrement économique. Le rapport pondéral argile: ciment variait entre 0,13 et 0,23 suivant les propriétés du rocher; il s'est élevé en moyenne à 0,18 pour l'ensemble des injections.

Le rideau d'injection a été exécuté en 4 phases avec des forages au diamant de 45 mm de diamètre et sous une pression maximum de 5 à 80 at.

- La première phase pour le forage-carottage de trouspilotes espacés de 36 m avec essais d'eau sous 10, 20 et 30 at.
- La deuxième phase pour les forages intermédiaires avec un espacement de 6 m entre les trous-pilotes; aux 2 extrémités de la galerie d'injection, les forages étaient disposés en éventail de densité équivalente. Après injection, forages de contrôle inclinés avec essais d'eau sous 10 et 20 at.
- La troisième phase pour les forages complémentaires intercalés entre les forages des phases précédentes dans la partie située au-dessus de la galerie d'injection; puis forages de contrôle et essais d'eau.
- La quatrième phase pour une série de forages distants de 6 m et devant renforcer l'action de la phase précédente dans le thalweg, puis forages de contrôle avec essais d'eau.

Le voisinage immédiat de la galerie d'injection a également été traité dans le cadre des travaux pour le voile d'injection au moyen d'éventails de 6 forages de 3 m distants de 3 m. Avec 37 470 m de forages, le rideau d'injection a une surface de 145 800 m²; l'absorption moyenne de coulis fut de 218 kg/m ou 56 kg/m². Le coût de ces travaux s'est élevé à 3,9 millions de francs, à savoir environ 27 fr./m². 2.3.2. Les injections de consolidation n'ont été exécutées que sur 70 m dans une zone très faillée du thalweg. Les forages, qui atteignaient 15 m, étaient disposés en éventails distants de 6 m. 2078 m de forages ont ainsi été injectés sous 10 à 20 at avec un coulis de ciment et d'argile; l'absorption moyenne s'éleva à 111 kg/m.

2.3.3. Les injections de contact ont été exécutées en 2 phases pour assurer la continuité de l'étanchement au voisinage du joint rocher-noyau.

- La première phase au coulis de ciment s'effectuait avant la mise en place du noyau, généralement depuis l'extérieur avec des forages de 4 à 8 m. Les faibles pressions admissibles limitèrent la profondeur d'action de cette phase à un peu plus de 50 cm et il fut nécessaire de la compléter ultérieurement par:
- La deuxième phase au gel d'argile-ciment exécutée dans la partie inférieure depuis la galerie d'injection et sur les hauts flancs à ciel ouvert. Les forages étaient disposés de la façon suivante: dans la partie inférieure, une paire de forages distants de 8 m à leur extrémité et injectés sur leurs 3,5 derniers mètres, espacement des paires 6 m, puis entre cellesci un forage médian injecté sur toute sa longueur; sur les hauts flancs, 2 rangées verticales en quinconce distantes de 4 m avec un espacement de 5 m dans une même rangée. Tandis que la rangée amont ne dépassait pas le contact rocher-noyau, la rangée aval était prolongée de quelques mètres dans le rocher. Ces deux phases totalisent respectivement 8032 et 930 m de forages avec une absorption moyenne de 150 et 270 kg/m.

2.3.4. Les injections des alluvions ont été exécutées en deux ou trois phases. Les forages à la couronne de métal étaient disposés par groupes de 2 à 5 en éventails distants de 3 m pour les deux premières phases. Les éventails de la troisième phase étaient intercalés entre les précédents et injectés avec des gels de bentonite pure, tandis que pour les phases 1 et 2 un coulis ciment-argile était employé. Le terrain traité par les 3076 m de forages représente un volume de 37 000 m³ avec une absorption moyenne en substance solide de 1570 kg/m ou 130 kg/m³; sa perméabilité naturelle de $5 \cdot 10^{-4}$ a pu être abaissée ainsi à 10^{-5} en moyenne.

2.4. Mattmark

Les roches cristallines en place sont recouvertes à Mattmark par des dépôts quaternaires constitués par des moraines anciennes et des alluvions diverses dont l'épaisseur maximum, dans l'axe de la vallée, atteint une centaine de mètres. Ces conditions géologiques ont imposé la solution «digue» dont les travaux d'étanchement seront de 3 ordres: la coupure étanche, le classique rideau d'injection et les injections de contact. Accessoirement la question du traitement des sédiments lacustres formant une couche superficielle d'une quinzaine de mètres s'est posée car, d'une part ces matériaux se sont avérés d'emblée non injectables, d'autre part ils seraient tels quels le siège de tassements excessifs sous l'effet des charges additionnelles occasionnées par l'ouvrage. Le décapage de cette couche sur toute la

Fig. 8 MATTMARK

Coupure étanche. Au second plan foreuse Rotary «Failing Star» pour les dépôts quaternaires épais, au premier plan machine classique à rotation pour les forages dans le rocher ou les alluvions contenant des blocs

Injektionsschirm. Im Hintergrund Rotary-Bohrgerät «Failing Star» für die langen Injektionsbohrungen in den Quartär-Ablagerungen, im Vordergrund klassisches Rotationsbohrgerät für Bohrungen im Fels und in blockigen Alluvionen

Cut-off grouting curtain. In the background rotary drilling machine "Failing Star" in quaternary deposits, in the foreground standard rotation machine for drilling in rock or in alluvial materials with blocks (Photo Dietlicher)

Fig 9 MATTMARK

Equipement Rotary «Conrad sismique» pour les courtes rangées extérieures de la coupure étanche

Rotary-Gerät «Conrad sismique» für die äußeren kurzen Bohrungen des Injektionsschirmes

Rotary equipment "Conrad sismique" for the short drillings on each side of the cut-off grouting curtain

surface d'assise de la digue est apparu finalement comme le plus sûr, bien qu'un essai de vibration ait démontré la possibilité de stabiliser ce terrain dans la zone d'appui du corps de la digue. Le procédé de vibration est analogue à celui utilisé pour le béton; les énormes vibrateurs sont introduits dans le sol, ce qui a pour effet l'apparition en surface de cônes de tassement d'environ 1 m de rayon qui peuvent être comblés ou non de matériaux d'appoint (fig. 7).

2. 4. 1. La coupure étanche constitue l'une des plus remarquables particularités de l'ouvrage; elle a pour but l'abaissement à 3 · 10-5 cm/s du coefficient de perméabilité des dépôts quaternaires qui oscille naturellement entre 10⁻¹ et 10⁻⁴ cm/s. Trois campagnes consacrées aux essais d'injection ont été nécessaires pour apporter la preuve que, malgré la grande diversité du terrain, cet objectif était accessible et pour mettre au point les méthodes d'injection et le projet de la coupure. Le champ d'essais qui recoupait toutes les couches en bordure de la future coupure avait une superficie de 12.16 m² ce qui représente le traitement d'environ 10 000 m³ de dépôts; 3 rangées parallèles de 4 forages distants de 3 à 5 m v étaient disposées. Par m³ de terrain, les quantités injectées en 7 phases s'élevèrent à 190 kg d'argile, 40 kg de ciment et 35 kg de bentonite et produits chimiques, à savoir au total 265 kg de substance solide. Les conclusions de ces essais sont que les injections d'argile-ciment permettent d'obturer les cavités relativement grandes, mais qu'ensuite il est nécessaire de recourir, pour les lentilles sableuses, aux mélanges de bentonite et de produits chimiques afin d'éviter le claquage dont les conséquences sont la formation de nouveaux cheminements préférentiels indésirables.

La coupure étanche sera constituée de 10 rangées verticales distantes de 3,5 m avec un espacement en quinconce des forages de 3 m; son épaisseur sera de 35 m au niveau de la fondation du noyau et de 14 m au niveau du thalweg rocheux.

Trois systèmes de forages sont employés pour la réaliser (fig. 8 et 9):

- des machines Rotary avec boue de forage pour les alluvions jusqu'à une profondeur de 50 m
- des foreuses à rotation avec boue de forage ou carottage pour les moraines, les zones de blocs ou les profondeurs supérieures à 50 m
- des foreuses à percussion jusqu'à 65 m, à rotation au-delà, avec télescopage pour les trous avec essais d'eau.

Les forages sont équipés de tuyaux d'injection avec manchettes de caoutchouc tous les 33 cm, puis les tubages éventuels sont retirés. L'injection individuelle de chaque manchette s'effectue de bas en haut au moyen de trains d'injection munis d'obturateurs doubles, mais l'injection d'un trou ne subit aucune interruption, car il suffit de retirer progressivement le train d'injection. Les rangées externes sont d'abord injectées de façon à éviter la dispersion ultérieure du coulis. L'injection est prévue en 3 phases distinctes et échelonnées dans le temps; elle sera précédée et suivie de forages espacés de 9 ou 18 m avec essais d'eau:

- La première phase pour un gel d'argile riche en ciment (environ 300 : 100 kg/m³ coulis) dans les 4 rangées externes.
- La deuxième phase pour un gel d'argile-ciment (environ 300: 25—75 kg/m³ coulis) dans toutes les rangées.
- La troisième phase pour un gel de bentonite (100 kg/ m³ coulis) et de produits chimiques (1 à 4 % du poids de la matière sèche) dans toutes les rangées.

L'absorption moyenne de matière sèche doit être environ de 165 kg/m³, c'est-à-dire nettement moins que lors des essais, mais il ne faut pas oublier que pour ceux-ci le claquage du terrain fut intentionnellement provoqué afin de déterminer les valeurs critiques et, d'autre part, que les dimensions du champ d'essais étaient modestes.

La coupure étanche, qui doit être achevée avant la mise en place des matériaux de la digue, aura une surface de 20 100 m² et un volume de 460 000 m³, elle nécessitera 71 000 m de forages et l'injection de 75 000 t de matières sèches et de produits chimiques ou de 250 000 m³ de coulis dont 100 000 m³ à base de bentonite; elle est devisée à 18 millions de francs, à savoir 900 fr./m² ou 39 fr./m³.

2. 4. 2. Le rideau d'injection sera exécuté après la coupure en prolongation de celle-ci depuis l'air libre, et sur ses flancs, depuis les galeries d'injection courant parallèlement à la surface rocheuse dans l'axe du noyau. Les 3 ou 4 phases auront des forages distants respectivement de 36, 18, 6 et éventuellement 3 m; les injections seront à base de coulis ciment-argile et, avec environ 11 300 m de forages, couvriront une surface de $65 000 \text{ m}^2$.

2.4.3. Les injections de contact seront en principe réalisées depuis les galeries d'injection par des éventails de 4 forages balayant la soudure rocher-noyau. Elles seront à base de ciment pour les parties rocheuses et d'argile et bentonite pour la zone du noyau; leur ampleur ne pourra être arrêté que lors de l'exécution.

3. Conclusions

L'évolution qui se dégage de cette description est flagrante; elle montre, qu'après avoir porté les injections du rocher à un haut point de perfection, l'on est maintenant arrivé, avec des coupures étanches comme celle de Mattmark, à dominer le problème de l'injection des terrains quaternaires tant des points de vue technique qu'économique. La science des fondations est toutefois loin d'avoir atteint les limites de ses développements, mais elle permet d'équiper aujourd'hui des chutes dont la rentabilité était problématique peu d'années avant et donnera sans doute encore lieu à des réalisations spectaculaires.

Pour Marmorera-Castiletto les documents de base de cet article ont été aimablement mis à disposition par M. W. Zingg, ingénieur en chef aux Services Industriels de la Ville de Zurich; pour les autres ouvrages ils proviennent des archives d'Electro-Watt.

MALVAGLIA - Officine Idroelettriche di Blenio S. A.

(Photo: Blenio S. A., Olivone)