Bestimmung der Felsdurchlässigkeit aufgrund von Stollen-Abpresseversuchen

Autor(en): Gysel, Martin

Objekttyp: Article

Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Band (Jahr): 76 (1984)

Heft 7-8

PDF erstellt am: 09.08.2024

Persistenter Link: https://doi.org/10.5169/seals-941211

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Bestimmung der Felsdurchlässigkeit aufgrund von Stollen-Abpressversuchen

Auswertung ausgewählter schweizerischer Druckstollen

Martin Gysel

1. Einleitung

Durch viele Druckstollen der Hochdruckanlagen im schweizerischen Alpenraum wird Wasser unter hohem Druck von den Speicherseen oder Wasserfassungen zum Bereich der Kraftwerkszentralen geleitet. Dabei werden die anstehenden geologischen Formationen jeweils auf Längen von vielen Kilometern durchquert.

Es liegt auf der Hand, die Erfahrungen mit diesen Stollen auszuwerten, um Hinweise über die Wasserdurchlässigkeit der betreffenden geologischen Formationen und allenfalls auch über die Betonauskleidung der Stollen zu erhalten.

Das verfügbare Material besteht aus Wasserverlustmessungen an vielen schweizerischen Druckstollen. Die Verluste wurden in Abpressversuchen für Stollenteile oder ganze Stollen gesamthaft ermittelt. Somit handelte es sich um eigentliche Grossversuche, welche jeweils eine bis mehrere geologische Formationen oder Einheiten erfassten. Alle Einflüsse aus Klüften, Störungszonen usw. kamen dabei zur Wirkung.

Diese Versuchsanordnung unterscheidet sich ganz wesentlich von punktweisen Abpressversuchen nach *Lugeon* im Bohrloch, aber auch von lokalen Abpress-Kammern.

Die Stollen-Abpressversuche ergeben Mittelwerte über grosse Felsbereiche. Für Berechnungen von Sickerströmungen im Gebirge sind solche Mittelwerte geeignet, um das wirkliche Verhalten zu erfassen.

Das im vorliegenden Bericht zusammengestellte Messmaterial stammt aus den Archiven der Motor-Columbus Ingenieurunternehmung AG, der Nordostschweizerischen Kraftwerke AG, der Blenio Kraftwerke AG bzw. der AG Ingenieurbüro Maggia sowie der Elektrizitätswerke der Stadt Zürich (EWZ) bzw. des Ingenieurbüros für bauliche Anlagen (IBA). Nach Ansicht des Verfassers ist das in seiner Art einmalige Material von grossem Wert.

Die nachfolgenden Zusammenstellungen wurden für die Nagra – Nationale Genossenschaft für die Lagerung radioaktiver Abfälle – neu ausgewertet. Denn es ist für die Nagra aufschlussreich, Messdaten über das Durchlässigkeitsverhalten ganzer geologischer Formationen zu erhalten. Zum Teil liegen bei den erfassten Druckstollen gleiche geologische Verhältnisse wie bei potentiellen Endlagerstandorten vor. Zum Teil ist wenigstens eine Verwandtschaft zu möglichen Wirtgesteinen vorhanden. In diesen Fällen können immerhin Grössenordnungen für die Durchlässigkeit von in Frage kommenden Wirtgesteinen angegeben werden.

Da auch die Kraftwerksbetreiber selbst und die Druckstollen und andere unterirdische Anlagen bearbeitenden Ingenieure und Geologen ein Interesse an den zusammengestellten Wasserverlustmessungen und den daraus abgeleiteten Gebirgsdurchlässigkeiten haben dürften, wird das vorhandene Material nachfolgend veröffentlicht.

Der NAGRA sei für ihr Einverständnis zu dieser Publikation bestens gedankt.

2. Lage der Druckstollen

Die getesteten und hier ausgewerteten Stollen verteilen sich gemäss Tabelle 1 über den schweizerischen Alpenraum.

Die geologischen Verhältnisse sind im Wallis (penninische Decken) meist durch Gneise, kristalline Schiefer und teils durch Bündner Schiefer gekennzeichnet. Auch im Bereich der Kraftwerke Zervreila und Hinterrhein liegen grösstenteils recht ähnliche Verhältnisse vor.

Der Stollen Nalps-Tgom der Kraftwerke Vorderrhein durchquert Gotthardmassiv, Garveramulde und das Tavetscher Zwischenmassiv.

Der Stollen Luzzone–Olivone liegt im Sostoschiefer (Bündner Schiefer).

Der Stollen Albigna durchquert Granite des Bergeller Massivs.

Die Stollen der Engadiner Kraftwerke liegen in den Unterengadiner Dolomiten, d.h. in der Sedimentstufe der Unterengadiner Decken.

Der Stollen im Prättigau liegt grösstenteils im Flysch.

Die Druckstollen der Kraftwerke Linth-Limmern und Sarganserland liegen vorwiegend in autochthonem und parautochthonem Mesozoikum, das auf dem nach Osten abtauchenden Aarmassiv liegt.

Die Stollen im Wägital befinden sich in Kalken, Flyschgesteinen und in der aufgeschobenen Molasse.

Somit ergeben die ausgewählten Beispiele einen informativen Querschnitt über kristalline Gesteine, Bündner Schiefer, Flysch, Kalke, Dolomite sowie Mergel und Sandsteine der aufgeschobenen Molasse.

3. Prinzip der Druckstollen-Abpressversuche

Der Stollen wird – in schematischer Darstellung (Bild 1) – am unteren Ende durch eine Drosselklappe abgeschlossen. Vom oberen Ende her wird das Wasser in den Stollen geleitet bis der Stollen vollständig gefüllt ist. Der Druck wird bis auf den maximalen späteren Betriebsdruck (max. Stauspiegel) gesteigert. Nun wird auch die Einlaufschütze geschlossen.

Tabelle 1. Die Lage der Druckstollen.

Kraftwerk	Druckstollen	Geographische Lage und tektoni- sche Einheit
KW Pallazuit	Les Toules-Pallazuit	Val d'Entremont; Bernharddecke
KW Mauvoisin	Mauvoisin-Bocheresse Bocheresse-Fionnay	Val de Bagnes; Bernharddecke und Bündnerschiefer
KW Gougra	Moiry-Motec Motec-Vissoie	Val d'Anniviers; Bernharddecke und Bündnerschiefer/Ophiolite
KW Ackersand I	Mattsand-Ackersand	Mattertal/Vispertal; Bernhard- decke
KW Zervreila	Safien-Balveins	Safiental/Domleschg; Bündner- schiefer
KW Hinterrhein	Valle di Lei-Grenze Niemet-Ferrera Sufers-Bärenburg Bärenburg-Pignia Pignia-Reischen Reischen-Sils	Valle di Lei, Hinterrhein, Schams, Sils i. Domleschg; Surettadecke, Schamser Decken, Bündnerschiefer
KW Vorderrhein	Nalps-Tgom	Vorderrhein; Gotthardmassiv, Garvera Mulde, Tavetscher Zwi- schenmassiv
KW Blenio	Luzzone-Olivone	Val Blenio/Val di Campo; Bündner- schiefer
Bergeller Kraftwerke	Albigna-Murtaira	Bergell; Bergeller Massiv
Engadiner Kraftwerke	Punt dal Gall-Ova Spin	Spöltal; Sedimente (Engadiner Dolomiten) im Bereich Quatter- valsdecke/Silvretta-Scarl-Decke
Bündnerkraftwerke	Klosters-Küblis	Prättigau; Flysch
KW Lindt-Limmern	Limmern Tierfehd-Linthal	Linthal, Kt. Glarus; antochtho- nes Mesozoikum
KW Sarganserland	Gigerwald-Mapragg	Taminagebiet; parautochthones und autochthones Mesozoikum
KW Wägital	Schräh-Rempen Rempen-Siebnen	Wägital; Säntisdecke, Einsied- ler Schuppenzone, Flysch und aufgeschobene Molasse

Tabelle 2. Wasserverluste in	Druckstollen b	ei Erstfüllung	(Wasser-Abpressversuche)
------------------------------	----------------	----------------	--------------------------

	Abmessu	ngen	Ver	such	Ver	lust	
Stollen	Länge ¹⁾	Durchmesser	Druck ²⁾	Dauer	Gesamt	Spezifisch	Bemerkungen
	km	m	bar	Tage	1/s	l/s·km·bar	
Bocheresse-Fionnay	2.7	3.20	17.0	-	0.30	0.01	-
Mattsand-Ackersand	12.1	2.50	3.2	-	0.95	0.02	-
Valle di Lei-Grenze	1.5	4.30	12.5	0.5	0.63	0.03	Versuchsdauer zu kurz
Motec-Vissoie	5.8	2.40	2.9	7.0	1.00	0.06	stationärer Verlust
Nalps-Tgom	3.0	3.40	10.3	3.5	2.24	0.07	nicht stat. Endverlust
Pignia-Reischen	4.3	5.40	5.3	7.0	3.60	0.16	nicht stat. Endverlust
Schräh-Rempen	3.7	3.60	6.3	-	-	0.27	-
Gigerwald-Mapragg	6.4	4.70	11.5	-	22.10	0.30	-
Les Toules-Pallazuit	5.7	2.10	8.2	-	15.00	0.32	-
Luzzone-Olivone	2.0	2.80	18.7	7.0	12.00	0.32	quasistat. Endverlust
Reischen-Sils	5.9	5.40	7.1	5.0	13.60	0.33	nicht stat. Endverlust
Bärenburg-Pignia	2.9	5.40	4.2	5.5	4.20	0.35	nicht stat. Endverlust
Klosters-Küblis	10.5	2.24	2.0	-	12.00	0.59	-
Moiry-Motec	3.1	2.40	11.2	3.0	23.00	0.66	stationärer Verlust
Tierfehd-Linthal	3.9	3.30	2.7	-	7.10	0.67	-
Safien-Balveins	11.5	3.15	3.7	-	28.50	0.67	stat. Verlust Dez. 1957
Niemet-Ferrera	3.0	4.30	12.5	4.0	38.00	1.01	stationärer Verlust
Sufers-Bärenburg	3.3	5.60	5.1	11.5	18.00	1.07	quasistat. Endverlust
Punt dal Gall-Ova Spin	7.6	3.70	14.5	4.0	133.00	1.21	stationärer Verlust
Albigna-Murtaira	4.8	2.50	8.0	-	50.00	1.30	-
Limmern	2.3	3.10	11.3	-	48.00	1.85	-
Rempen-Siebnen	2.5	3.60	2.3	-	-	2.80	-
Mauvoisin-Bocheresse	2.0	3.20	16.0	-	246.00	7.70	vor Einziehen Gunitring

1) ohne gepanzerte Strecken 2) Mittel in Stollenachse

In vorhandenen Vertikalschächten (z.B. Einlauf und Wasserschloss) wird der Wasserspiegel über einige Tage beobachtet. Aus dem allfälligen Absinken des Wasserspiegels kann der gesamte Wasserverlust berechnet werden. Der Versuch sollte unter periodischem Nachfüllen von Wasser so lange andauern, bis der stationäre Verlust gemessen werden kann. Verluste durch Schützen, Klappen, Panzertüren werden in Abzug gebracht, um den Nettoverlust durch den Fels zu bestimmen.

Nach Druckprobe und Entleerung wird der Stollen sofort kontrolliert. Neue Risse, Wassereintritte usw. werden registriert. Allfällige Schäden werden repariert. In seltenen Fällen mit hohen Verlusten werden noch Verstärkungen (z.B. ein Innenring) ausgeführt. Mit einer neuen Druckprobe wird der Erfolg von Reparaturen oder Verstärkungen überprüft.

4. Bauliche Ausführung der überprüften Druckstollen

Die untersuchten Druckstollen wurden mit Ausnahme des gefrästen Stollens Gigerwald-Mapragg in konventionellem Sprengvortrieb erstellt. Die Stollen sind mit unbewehrtem Beton von 25 bis 35 (zum Teil 50) cm Stärke ausgekleidet. Die entstandenen Sprengauflockerungen sind durch Zementinjektionen wieder verbessert, d.h. abgedichtet worden. Diese Injektionen bilden einen Bestandteil der meistens vorgesehenen Injektionsprogramme, wobei Füll-, Kontakt- und Konsolidationsinjektionen unterschieden werden.

Länge und Innendurchmesser der Stollen gehen aus Tabelle 2 hervor.

5. Gemessene Wasserverluste

Die gemessenen Wasserverluste sind in Tabelle 2 zusammengestellt.

Als Vergleichswert von Stollen zu Stollen und von Gestein zu Gestein dient der spezifische Verlust in I/s km bar. Der Gesamtverlust wird somit durch die Stollenlänge sowie durch den aufgebrachten Druck, bezogen auf die mittlere Höhe der Stollenachse, geteilt.

In Tabelle 2 sind die Stollen in der Reihenfolge der zuneh-

menden spezifischen Verluste aufgeführt. Zum Verständnis der Grössenordnung der gemessenen Verluste sei angeführt, dass für den Kraftwerksbetrieb im allgemeinen Resultate bis zu 1 I/s km bar gerade noch als tragbar betrachtet werden.

6. Interpretation der Wasserverluste

6.1 Grundlagen zur Berechnung der Felsdurchlässigkeit Im folgenden wird versucht, die gemessenen Wasserverluste mit der Wasserdurchlässigkeit des Gebirges und der Stollenauskleidung in Beziehung zu setzen. Sodann werden globale Durchlässigkeitswerte für das Gebirge berechnet.

Zu diesem Zweck kann die Sickerströmung aus dem Druckstollen ins Gebirge näherungsweise als Umkehrung des Vorganges am unendlich langen Brunnen aufgefasst werden.

Für den unendlich langen Brunnen gilt:

$$q = \frac{2\pi \kappa_{\rm F} p}{\ln (R/r)} \tag{1}$$

mit

- q Sickerwassermenge pro Längeneinheit
- *k*_F Durchlässigkeitskoeffizient des Bodens (Felsens)
- *p* Über- bzw. Unterdruck im Brunnen (Stollen)
- R Brunnenwirkradius
- *r* Radius des Brunnens (Stollens)

Bild 1. Prinzipskizze eines Druckstollen-Abpressversuchs.

Bild 2. Übersichtskarte mit den Wasserkraftanlagen, von denen Abpressversuche ausgewertet werden konnten.

Für den dem mit Beton verkleideten Stollen entsprechenden Fall gibt *M. Muskat* [1] folgende veränderte Brunnengleichung:

$$q = \frac{2\pi k_{\rm B} p}{\ln \left[(r+d)/r \right] + \ln \left[\frac{R}{r+d} \right] k_{\rm B}/k_{\rm F}}$$
(2)

mit neu

k_B Durchlässigkeitskoeffizient des Betons

d Betonstärke

Die Wasserverluste pro Stollenlängeneinheit sind somit direkt proportional zum Innendruck. Dies gilt auch für die Zugspannungen bzw. allfälligen Rissbildungen an der Stollenwandung, die neben der reinen Materialdurchlässigkeit oft die wichtigste Ursache für das Auftreten von Wasserverlusten sind.

Wird in vorgenannter veränderter Brunnengleichung für den Wirkradius *R* der übliche Wert von 500 *r* bzw. 500 (r + d) eingeführt und die Betonstärke *d* zu 0,2 *r* festgesetzt, so ergibt sich für den spezifischen Wasserverlust in I/s pro km Stollen und bar Überdruck:

$$q [in I/s km bar] = \frac{6.3 \ 10^5 k_{\rm B}}{0.18 + 6.2 \ k_{\rm B}/k_{\rm F}}$$
(3)

wobei $k_{\rm B}$ und $k_{\rm F}$ in cm/s einzuführen sind. Aus der Auswertung der Formel (3) für verschiedene Verhältnisse von k_{Beton} zu k_{Fels} können folgende Schlüsse gezogen werden:

1. Bei schlechten bis mittleren Felsverhältnissen (Wasserdurchlässigkeit) hat die Dichtigkeit der Betonverkleidung einen wesentlichen Einfluss auf die Wasserverluste aus dem Stollen.

2. Bei sehr dichtem Fels spielt die Qualität der Verkleidung nur eine untergeordnete Rolle, so dass sie ohne weiteres entbehrt werden kann, wenn sie nicht aus Gründen der Wandrauhigkeit benötigt wird (Standsicherheitserwägungen dürften bei guten Felsverhältnissen ohnehin entfallen).

3. Bei einer guten Betondichtigkeit sind andererseits die Felsverhältnisse von geringem Einfluss auf die Wasserverluste.

Diese Folgerungen sind für die vorliegende Auswertung von Bedeutung: Um die Felsdurchlässigkeiten zu berechnen, muss zuerst die Durchlässigkeit der Betonauskleidung angenommen werden. Von dieser Annahme hängt die berechnete Felsdurchlässigkeit ab. Es zeigt sich, dass die berechnete Felsdurchlässigkeit um so weniger von der Betondurchlässigkeit abhängt, je kleiner die Felsdurchlässigkeit selbst ist.

Mathematisch kann dies durch Auflösung der Beziehung (3) nach $k_{\rm F}$ gezeigt werden:

$$k_{\rm F} = \frac{6.2 \ k_{\rm B} q}{6.3 \ 10^5 \ k_{\rm B} - 0.18 \ q} \tag{4}$$

mit $k_{\rm F}$, $k_{\rm B}$ in cm/s und q in I/s km bar

Grenzfälle

Durch jeweilige Betrachtung des Nenners von (4) und nachher der Gesamtformel (4) ergeben sich die Grenzwerte für $k_{\rm F}$ wie folgt:

a) $k_{\rm B} \rightarrow 0$	$\rightarrow k_{\rm F} = -$	<u>6,2</u> <i>k</i> _B 0,18	keine Aussage über k _F möglich, wenn Ausklei- dung zu dicht ist
b) $k_{\rm B} \rightarrow \infty$	$\rightarrow k_{\rm F} =$	$\frac{6,2 \ q}{6,3 \ 10^5}$	$k_{\rm F}$ strebt gegen einen Grenzwert, der nur noch von <i>q</i> abhängig ist
c) $q \rightarrow 0$	$\rightarrow k_{\rm F} =$	$\frac{6,2}{6,3}$ $\frac{q}{10^5}$	siehe b)

Tabelle 3. Berechnung der Felsdurchlässigkeit.

	Spez. Ver-			Felsdurchlässig	keit k _r (cm/s)		
Stollen	lust l/s·km·bar	(k _B =10 ⁻⁸ cm/s)	(k _B =10 ⁻⁷ cm/s)	(k _B =10 ⁻⁶ cm/s)	(k _B =10 ⁻⁵ cm/s)	(k _B =10 ⁻⁴ cm/s)	(k _B = 1 cm/s)
Bocheresse-Fionnay Mattsand-Ackersand Valle di Lei-Grenze Motec-Vissoie Nalps-Tgom Pignia-Reischen Schräh-Rempen Gigerwald-Mapragg Les Toules-Pallazuit Luzzone-Olivone Reischen-Sils Bärenburg-Pignia Klosters-Küblis Moiry-Motec Safien-Balveins Tierfehd-Linthal Niemet-Ferrera Sufers-Bärenburg Punt dal Gall-Ova Spin Albigna-Murtaira Limmern Rempen-Siebnen Mauvoisin-Bocheresse	0.01 0.02 0.03 0.06 0.07 0.16 0.27 0.30 0.32 0.32 0.35 0.59 0.66 0.67 1.01 1.07 1.21 1.30 1.85 2.80 7.70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.98 · 10 ⁻⁷ 0.76 · 10 ⁻⁴

6.2 Einfluss der Betonauskleidung

Wenn im Fall b) die Betondurchlässigkeit gross ist, so hängt die Bestimmung von $k_{\rm F}$ wenig bis gar nicht von $k_{\rm B}$ ab. Für sehr geringe Messwerte von q im Fall c) trifft dasselbe zu. Dies ist der schon erwähnte Fall der an sich geringen Felsdurchlässigkeit.

Nur im Fall a) mit zu grosser Betondichtigkeit versagt die Auswertungsmethode. Es kann nichts mehr über den Fels ausgesagt werden, wenn die Stollenauskleidung praktisch wasserdicht ist.

Bei den ausgewerteten Stollen wurde meistens nur eine unbewehrte Betonauskleidung vorgesehen. Deshalb entstehen im Betrieb unter dem Wasserinnendruck feine oder manchmal auch gröbere Risse, die sich bei Entleerung des Stollens wieder schliessen. Deshalb dürften übliche Laborwerte der Betondurchlässigkeit (Bereich 10⁻⁷ bis 10⁻⁹ cm/s) sehr selten erreicht werden.

Bei der Berechnung der $k_{\rm F}$ -Werte für jeden Stollen in Tabelle 3 wurde $k_{\rm B}$ in weiten Grenzen variiert, um das eben Gesagte numerisch zu veranschaulichen.

6.3 Einfluss des Bergwasserspiegels

Ein weiterer Einflussfaktor bei der Bestimmung von $k_{\rm F}$ ist der Bergwasserspiegel. In Beziehung (2) ist der Druck p als Differenz zwischen dem Wasserdruck im Stollen und dem Bergwasserdruck einzusetzen.

Solange die Stollen eindeutig über einem durchgehenden Bergwasserspiegel liegen, kann der Innendruck ohne Abzug eingesetzt werden. Dies dürfte bei den untersuchten Stollen oft so sein, da die Stollen hoch über der Talsohle flach zum jeweiligen Wasserschloss führen, von welchem her dann das konzentrierte Gefälle ausgenützt wird.

Immerhin sind auch aus der Schweiz einige Stollen bekannt, bei denen die Zuflüsse grösser waren als die Verluste. Diese Stollen (z.B. ein Stollen im Vorderrheintal) wurden für die vorliegende Studie nicht berücksichtigt.

Diejenigen Fälle, bei denen der Innendruck durch den Aussendruck nur teilweise reduziert wird, sind schwieriger zu erkennen.

Quantitative Aussagen können nur gemacht werden, wenn Piezometermessungen zur Erfassung des Bergwasserspiegels vorhanden sind.

Zur Abschätzung des Fehlers, der entstanden sein kann, wenn im einen oder anderen Fall die Wirkung eines Bergwasserspiegels nicht entdeckt wurde, wird Formel (4) betrachtet.

In (4) hat der spezifische Verlust q die Einheit I/s km bar. Für die wirksame Druckdifferenz Δp ergibt sich der Verlust $q^* = q \ \Delta p$ in I/s km. Es gilt somit

$$q = q^* / \Delta p \tag{5}$$

Einsetzen von (5) in (4) ergibt

$$k_{\rm F} = \frac{6.2 \ k_{\rm B} \ q^* / \Delta p}{6.3 \ 10^5 \ k_{\rm B} - 0.18 \ q^* / \Delta p}$$

bzw.

$$k_{\rm F} = \frac{6.2 \ k_{\rm B} \ q^*}{6.3 \ 10^5 \ k_{\rm B} \ \Delta p - 0.18 \ q^*}$$

Grenzwert

Für
$$\Delta p \rightarrow 0 \rightarrow k_{\rm F} = -6.2 \ k_{\rm B}/0.18$$

Wie für den Fall $k_B \rightarrow 0$ ist auch hier keine Aussage mehr über k_F möglich (keine Strömung mehr).

Numerisches Beispiel für einen Fall mit reduziertem Δp (Druckstollen Reischen-Sils):

Δp	=	7,1 bar (voller Druck)	Δ	р	k_{F}	
q	=	0,33 l/s km bar	(bar)	(%)	(cm/	s)
q^*	=	$q \Delta p = 2,34 \text{ l/s km}$				
k _B	=	10 ⁻⁶ cm/s	7,1	100	3,59	10^{-6}
			3,55	50	7,99	10^{-6}
			1,775	25	20,81	10^{-6}
			0,8875	12,5	85	10^{-6}

Das Beispiel zeigt, dass Druckabweichungen bis zu rund 50% die Grössenordnung der berechneten Felsdurchlässigkeit $k_{\rm F}$ nicht verändern. Bei grösseren Abweichungen nimmt der Fehler allerdings exponentiell zu.

Für die Belange der vorliegenden Auswertung werden allfällige Fehler aus der Wirkung des Bergwasserspiegels für tragbar betrachtet, da die berechnete Grössenordnung von $k_{\rm F}$ als gesichert gelten kann.

6.4 Einfluss des Brunnenwirkradius

Gleichung (2) zeigt, dass der Brunnenwirkradius R einen Einfluss auf die Berechnung von $k_{\rm F}$ ausübt.

Eine Variation des Verhältnisses R/(r + d) soll diesen Einfluss aufzeigen.

Als typisches Beispiel wird gewählt:

q = 0,30 l/s km bar	Mit diesen Wer	ten erhält man:
$k_{\rm B} = 10^{-6} {\rm cm/s}$		k_{F}
B/(r+d) = 100,200,500	R/(r+d)	(cm/s)
1000	100	$2,40 \ 10^{-6}$
	200	$2,76 \ 10^{-6}$
	500*	3,23 10 ⁻⁶
	1000	3,60 10 ⁻⁶
	* für Auswertu	ing gewählt

Für die Praxis sind Wirkungsradien von weniger als 500 (r + d) von Interesse, wobei an eine nahe Geländeoberfläche gedacht wird. In diesem Fall ist der Druckgradient des Felswassers grösser als bei durchschnittlichen Verhältnissen (R/[r + d] = 500), so dass die Felsdurchlässigkeit in Wirklichkeit kleiner sein muss. Die Variation der $k_{\rm F}$ -Werte ist jedoch bescheiden, wie die Tabelle zeigt.

6.5 Einfluss der Stollen-Endzonen

Die bisherigen Überlegungen beruhen alle auf einem zweidimensionalen Modell, worin die Strömungsvorgänge in Querschnittsebenen betrachtet werden, die normal zur Stollenachse stehen.

Für die Stollen mit überragender Längenausdehnung ist dies richtig, zumal der statische Druck während des Abpressversuchs von Ort zu Ort im Stollen kaum ändert, da die Stollen mehr oder weniger horizontal verlaufen. Somit bestehen für Wasser, welches in den Fels austritt, in verschiedenen Querschnitten die gleichen Druckbedingungen (Risse in Beton gleichmässig verteilt). Es ist also hydraulisch nicht möglich, dass Wasser beispielsweise in einer angenommenen Auflockerungszone hinter der Betonauskleidung in Längsrichtung (parallel zur Stollenachse) strömt, da kein Druckgradient vorhanden ist.

Hingegen muss überlegt werden, ob in den Stollen-Endzonen singuläre Wasserverluste stattfinden durch Entweichen von Wasser parallel zur Stollenachse hin zur freien Oberfläche. Durch bauliche Massnahmen sind solche Endverluste weitgehend unterbunden, indem die Endzonen eine durchgehende Stahlpanzerung aufzuweisen pflegen. Je nach Hangneigung und Standort des Wasserschlosses beträgt die Länge der Stahlpanzerung 100 bis 200 m oder mehr. Mit der Panzerung kann man Endverluste meistens unterbinden. Drainagebohrungen dienen zur genauen Kontrolle, da Wasseraustritte im Bereich von Wasserschloss und Beginn der Druckleitung/Druckschacht unbedingt vermieden werden müssen wegen möglicher Hangrutschungen usw. Falls bei Abpressversuchen Drainagewasser festgestellt wurde, wurde dieses zur Berechnung des Nettoverlustes vom Bruttoverlust abgezogen.

6.6 Berechnung der Felsdurchlässigkeit

Aus Formel (4) ergeben sich nach Einsetzen der gemessenen spezifischen Verluste gemäss Tabelle 2 die globalen Felsdurchlässigkeiten k_F der getesteten geologischen Einheiten. Die Berechnung erfolgte in Tabelle 3 für einen weiten Bereich der Betondurchlässigkeit $k_{\rm B}$ (10⁻⁸ bis 10⁻⁴ cm/s und als Extremwert 1 cm/s).

Das Zahlenfeld für $k_{\rm F}$ in Tabelle 3 zeigt numerisch deutlich die bereits festgestellten Grenzfälle:

- Am rechten Rand mit grosser Durchlässigkeit des Betons strebt $k_{\rm F}$ sehr bald gegen einen Grenzwert, der nur von qabhängig ist.

 Am oberen Rand mit kleinem q hat k_B ebenfalls einen geringen Einfluss auf k_F.

Tabelle 4. Zuordnung der Felsdurchlässigkeiten zu den geologischen Verhältnissen.

Druckstollen	Felsdurchläs- sigkeit k cm/s	Geolog. Verhältnisse	Stollenauskleidung ^{l)}
Bocheresse-Fionnay	1.0 · 10 ⁻⁷	Casannaschiefer, Gneis	25 cm Beton
Mattsand-Ackersand	2.0 · 10 ⁻⁷	Gneis u. untergeordnet Bündnerschiefer	Betonauskleidung
Valle di Lei-Grenze	3.0 · 10 ⁻⁷	Casannaschiefer	Betonauskleidung
Motec-Vissoie	6.0 · 10 ⁻⁷	Casannaschiefer; grosse Mylonitzonen	Betonauskleidung
Nalps-Tgom	7.0 · 10 ⁻⁷	vorwiegend Paragneis, untergeordnet Tonschie- fer, Sandkalku. Dolomit	Betonauskleidung
Pignia-Reischen	1.7 · 10 ⁻⁶	Flysch u. Gneis sowie Kalke, Dolomite, Brek- zien, Schiefer, Gips, Tonschiefer (z.T. Bünd- nerschiefer) in Tschera- und Gelbhornzone	Betonauskleidung
Schräh-Rempen	2.9 · 10 ⁻⁶	Kalk, Flyschgesteine, Molasse	20-50 cm Beton, z.T. Innenring, 8 cm be- wehrter Spritzbeton
Gigerwald-Mapragg	3.2 · 10 ⁻⁶	Kalk	Betonauskleidung
Les Toules-Pallazuit	3.5 · 10 ⁻⁶	Gneise	-
Luzzone-Olivone	3.5 · 10 ⁻⁶	Bündnerschiefer	20-32 cm Beton
Reischen-Sils	3.6 · 10 ⁻⁶	Bündnerschiefer (Ton- schiefer, Kalkschiefer), Kalke	Betonauskleidung
Bärenburg-Pignia	3.8 · 10 ⁻⁶	Porphyr u. Augengneis	Betonauskleidung
Klosters-Küblis	0.7 · 10 ⁻⁵	Flysch	dito, z.T. Innenring
Moiry-Motec	0.8 · 10 ⁻⁵	Casannaschiefer u. Triasgesteine	Betonauskleidung u. sehr viel Injektio- nen
Safien-Balveins	0.8 · 10 ⁻⁵	Bündnerschiefer	Betonauskleidung
Tierfehd-Linthal	0.8 · 10 ⁻⁵	Kalk, Dachschiefer, Sandstein	Betonauskleidung
Niemet-Ferrera	1.4 · 10 ⁻⁵	Porphyr- u. Casanna- schiefer sowie eine Zo- ne mit Triasgesteinen	Betonauskleidung
Sufers-Bärenburg	1.5 · 10 ⁻⁵	vorwiegend Porphyr	Betonauskleidung
Punt dal Gall-Ova Spin	1.8 · 10 ⁻⁵	Dolomit	Betonauskleidung
Albigna-Murtaira	2.0 · 10 ⁻⁵	Granit	Betonauskleidung
Limmern	3.9 · 10 ⁻⁵	Kalk	Betonauskleidung
Rempen-Siebnen	1.4 · 10 ⁻⁴	Mergel u. <u>Sandsteine</u> (Molasse)	50 cm Beton und z.T. 7-8 cm Spritzbeton armiert
Mauvoisin-Bocheresse	2.0 · 10 ⁻⁴	Bündnerschiefer, Quar- zite, Dolomite	25 cm Beton u. be- wehrter Spritzbeton

- Am linken Rand gerät man mit zunehmendem *q* bald in den Bereich negativer k_F-Werte. k_B ist hier zu klein (Beton zu dicht), um eine Aussage bezüglich $k_{\rm F}$ zu erlauben.

- Der untere Rand, charakterisiert durch grosse q bzw. grosse Felsdurchlässigkeit, zeigt durch die Kombination von grossem $k_{\rm F}$ und kleinem $k_{\rm B}$ vermehrt die unbestimmte Situation, in der $k_{\rm F}$ nicht angegeben werden kann.

Aus dem bereits geschilderten Verhalten der Stollenauskleidungen, die unter Innendruck Zugrisse aufweisen, wird abgeleitet, dass k_B erheblich grösser ist als für Laborverhältnisse (10⁻⁷ bis 10⁻⁹ cm/s). Es wird ein Bereich von 10⁻⁵ bis 10⁻⁶ cm/s gewählt. Für die weiteren Betrachtungen wird im Normalfall, wenn nicht besondere Kenntnisse über die Durchlässigkeit vorliegen, von $k_{\rm B} = 10^{-6}$ cm/s ausgegangen.

Tabelle 3 zeigt, dass noch stärker durchlässige k_B-Werte die Ergebnisse von $k_{\rm F}$ nur unwesentlich verändern.

6.7 Felsklassifikation nach Durchlässigkeit aufgrund der Stollen-Abpressversuche

Die berechneten k_F-Werte sind in Tabelle 4 zusammengefasst und den jeweiligen geologischen Verhältnissen zuaeordnet.

Die ermittelten Werte stellen die globalen Felsdurchlässigkeiten über die ganzen Stollenlängen dar, wobei ein Wertbereich von 10⁻⁴ bis 10⁻⁷ cm/s resultiert. Pro Stollen wurden zum Teil mehrere geologische Einheiten in den Globaltest einbezogen, so dass ein Rückschluss auf das Verhalten einer bestimmten geologischen Einheit nicht immer leicht ist. Durch das Studium der einzelnen geologischen Profile längs der untersuchten Druckstollen konnten aber doch einige einzelne Gebirgsformationen mit den zugehörigen Durchlässigkeiten $k_{\rm F}$ bestimmt werden. Diese etwas allgemeiner verwendbaren Resultate der in der Studie berücksichtigten schweizerischen Druckstollen (Auswahl) sind in der Tabelle 5 zusammengefasst.

7. Schlussfolgerungen

in einen

Die ermittelten k_F-Werte liegen nach Heitfeld [2] im Bereich «deutlich durchlässig» beim Sandstein bzw. «gering durchlässig» bei den kristallinen Schiefern und Gneisen. Zum Vergleich mit dem ganzen Schwankungsbereich des k_F-Wertes wird die entsprechende Gliederung nach Heitfeld herangezogen:

Gruner AG). 1) Wenn keine Stärke angegeben ist, handelt es sich im Normalfall um 25-35 cm Beton

G	est	tei	n
9	00		•••

Gestein	k _F -Wert
sehr gering durchlässig	$\leq 1.10^{-8} \text{ cm/s}$
gering durchlässig	$> 1.10^{-8}$ bis 1.10^{-5} cm/s
deutlich durchlässig	$> 1.10^{-5} \text{cm/s} \text{bis} 5.10^{-3} \text{cm/s}$
stark durchlässig	$> 5.10^{-3} \text{cm/s} \text{bis} 1.10^{-1} \text{cm/s}$
sehr stark durchlässig	$> 1.10^{-1} \text{ cm/s}$

Zu Tabelle 5 im einzelnen sei folgender Kommentar angefüat:

1. Die getesteten kristallinen Schiefer und Gneise gehören vorwiegend den penninischen Decken an. Die tektonische Vorgeschichte dieser Decken hat meistens eine recht ausgeprägte Klüftung erzeugt. Die Durchlässigkeit in den autochthonen Massiven und im Grundkristallin dürfte zum Teil geringer sein.

2. Die recht günstigen Resultate im Bündner Schiefer, aber auch im Flysch, rufen nach einem Quervergleich mit den ·Mergeln, welche je nach Tongehalt und Klüftung ein ähnliches Durchlässigkeitsverhalten wie die Bündner Schiefer aufweisen mögen. In wenig geklüfteten, plastischen, stark tonhaltigen Mergeln dürfte jedoch die Durchlässigkeit erheblich kleiner als im Bündner Schiefer sein.

3. Aus den Versuchen in Granit und Porphyr ist zu schliessen, dass eine deutliche Klüftung wie erwartet eine erhebliche Durchlässigkeit erzeugt (deutliche Zerrklüfte im Bergeller Granit und Zerr-/Druckklüfte im Rofna-Porphyr). Eine Übertragung auf andere Granite ist nur bedingt möglich.

4. Die getesteten Kalke und Dolomite zeigen entsprechend ihrer Bankung und Klüftung ebenfalls eine deutliche Durchlässigkeit.

5. Noch durchlässiger sind die Sandsteine der aufgeschobenen Molasse. Es wird angenommen, dass flach liegende Sandsteine (Mittelland) mit weniger ausgeprägter Klüftung meist auch eine geringere Durchlässigkeit aufweisen.

Bezüglich der Durchlässigkeit der Sandsteine ist der Einfluss des Alters des Gesteins zu erwähnen. Karrenberg [2] berichtet z.B. von Sandsteinen des Devon mit $k_{\rm F} = 2 \cdot 10^{-11}$ bis 10⁻¹² cm/s.

Meistens gilt die Regel, dass die älteren Gesteine undurchlässiger sind als die jüngeren.

Der Unterschied zwischen der Gesteinsdurchlässigkeit und derjenigen des Gebirges samt allen Klüften, Schichtfugen usw. ist augenfällig. Als Beispiel sei eine Aufstellung von Louis in [2] zitiert:

Ges	tein	Felsmit	einer Kluft/lfdm
Gesteinsart	k _G (cm∕s)	Spalt- weite (mm)	k _F (cm/s) in der Kluft- richtung
1. Kalksteine	0.36 - 23 · 10 ⁻¹³	0.1	0.7 · 10 ⁻⁴
 Sandsteine Karbon Devon 	0.29 - 6 · 10 ⁻¹¹ 0.21 - 2 · 10 ⁻¹¹	0.2	$0.6 \cdot 10^{-3}$ $0.5 \cdot 10^{-2}$
 Mischgesteine sandig-kalkig tonig-kalkig kalkig-tonig 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.7	$2.5 \cdot 10^{-2}$ 0.7 \cdot 10^{-1}
4. Granit	$0.5 - 2 \cdot 10^{-10}$	2.0	0.6
5. Schiefer	0.7 - 1.6 · 10 ⁻¹⁰	4.0	0.5 · 10 ¹
6. Kalkstein	0.7 - 120 · 10 ⁻⁹		
7. Dolomit	$0.5 - 1.2 \cdot 10^{-8}$	6.0	1.6 · 10 ¹

Die effektive Durchlässigkeit eines Gebirgskörpers kann deshalb nur in situ bestimmt werden. Zur Bestimmung von repräsentativen Durchschnittswerten eignen sich nur grossräumige Versuchsanordnungen, wie z.B. Stollen-Abpressversuche. Lugeon-Abpressversuche im Bohrloch oder Abpressversuche von Druckkammern geben punkt-

Tabelle 5. Felsklassifikation nach Durchlässigkeit aufgrund der Stollen-Abpressversuche. Seltene Extremwerte sind in Klammern gesetzt.

Felsdurchlässigkeit k _F (in cm/s)	Felsformation
10 ⁻⁷ bis 10 ⁻⁶ (5 · 10 ⁻⁶)	kristalline Schiefer (z. B. Casanna- schiefer), Gneise
(10 ⁻⁶) 5 · 10 ⁻⁶ bis 10 ⁻⁵	Bündnerschiefer (Tonschiefer, Kalk- schiefer) und Flysch
10 ⁻⁵ bis 5 · 10 ⁻⁵	stark geklüfteter Granit u. Porphyr
(5 · 10 ⁻⁶) 10 ⁻⁵ bis 5 · 10 ⁻⁵	Dolomit, Kalk; nicht verkarstet
10 ⁻⁴ bis 5 · 10 ⁻⁴	Sandstein (Molasse)

weise Aussagen und erfassen oft zu geringe Gebirgsvolumina oder nur ganz lokale Verhältnisse. Auch bei Ausführung von vielen einzelnen Punktmessungen dürfte der Schluss auf grossräumig wirksame Durchlässigkeiten nicht leicht sein. Zudem ist beim Vergleich von $k_{\rm F}$ -Werten, die aus verschiedenen Quellen stammen, grosse Vorsicht am Platz. Es können grosse Abweichungen auftreten, die zum Teil aus den ganz unterschiedlichen Versuchsanordnungen herrühren (Gestein/Gebirgsverband).

Die vorliegende Bestimmung von Felsdurchlässigkeiten $k_{\rm F}$ an Formationen der Schweizer Alpen dürfte von Interesse sein, da bisher ausser an Druckstollen unseres Wissens im betrachteten Raum überhaupt noch keine anderen grossräumigen Messungen ausgeführt worden sind.

Literatur

[1] Muskat, M. (1946): The Flow of Homogeneous Fluids through Porous Media, McGraw-Hill, New York und London

[2] Karrenberg, H. (1981): Hydrogeologie der nichtverkarstungsfähigen Festgesteine, Springer Verlag

Adresse des Verfassers: Dr. Martin Gysel, dipl. Bauing. ETH, Motor-Columbus Ingenieurunternehmung AG, Parkstrasse 27, CH-5401 Baden.

Türkei baut Grosskraftwerk «Atatürk»

Das schweizerische Firmenkonsortium Sulzer-Escher Wyss AG, Zürich, und BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, hat kürzlich den Auftrag zur Lieferung der hydraulischen und elektrischen Ausrüstung für das 2400-MW-Wasserkraftwerk «Atatürk» erhalten. Der Auftragswert beträgt 960 Mio Schweizer Franken. Die ersten Maschinen sollen 1991 den Betrieb aufnehmen.

Die BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, liefert zusammen mit den Tochtergesellschaften in Deutschland (BBC Mannheim) und Italien (Tecnomasio Italiano Brown Boveri, Mailand) die gesamte elektrische Kraft-

Bild 1. Die drei Euphrat-Staustufen im Schnitt. Das schweizerische Firmenkonsortium Sulzer-Escher Wyss und BBC Brown Boveri liefert die gesamte hydraulische und elektrische Ausrüstung für die Wasserkraftwerke Karakaya und «Atatürk». Karakaya, das 1986 mit der ersten Maschine den Betrieb aufnimmt, weist eine installierte Leistung von 1800 MW auf, «Atatürk» eine solche von 2400 MW.

