Hilfswehr beim Kraftwerk Rheinau repariert

Autor(en): [s.n.]

Objekttyp: Article

Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Band (Jahr): 86 (1994)

Heft 11-12

PDF erstellt am: 12.07.2024

Persistenter Link: https://doi.org/10.5169/seals-940828

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

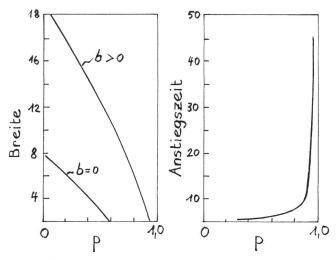


Bild 2. Überflutungswahrscheinlichkeit in Funktion verschiedener Parameter: Links die Breite des Stirnüberfalls in Metern mit und ohne Vorgabe eines (konstanten) Freibords, rechts die Anstiegszeit der Hochwasserwelle in Stunden (bei Anstiegszeiten unter 10 Stunden ist hier das Ergebnis sensitiv, bei grösseren Werten nicht).

- Wie gross ist der Einfluss des Freibords? Das heisst, wie gross ist die Überflutungswahrscheinlichkeit der Talsperre, wenn man ein Überschwappen von Windwellen zulässt? (Bild 2, links, zeigt ein Beispiel in Funktion der Breite einer Hochwasserentlastung.)
- Wie gross ist bei gegebener Hochwasserspitze der Einfluss der Hochwasser-Anstiegszeit? (Dieser Wert kann statistisch ja meistens schlechter erfasst werden als die Hochwasserspitze; Bild 2 rechts).
- Wie empfindlich macht sich die Versagenswahrscheinlichkeit gewisser Betriebsorgane auf das Ergebnis bemerkbar?
- Wie stark wird die Überflutungswahrscheinlichkeit betroffen, wenn sich die Speicherbewirtschaftung grundlegend ändert?

Es versteht sich, dass man solche Ergebnisse angesichts der Voraussetzung der stochastischen Unabhängigkeit der Grunddaten vorsichtig werten muss. Es könnte ja sein, dass grosse Hochwasser und starke Winde irgendwie zusammenhängen. In einigen Gebieten treten Hochwasser bei Stürmen auf, in anderen dagegen infolge von Starkregen bei eher mässigen Winden. Auch andere Verquickungen der Grunddaten sind denkbar. Pohl ist deshalb daran, seine Methodik für stochastisch abhängige Grunddaten auszuweiten. Dabei befindet er sich allerdings zusammen mit andern Hydrologen und Wasserwirtschaftern, die sich mit der Überflutungssicherheit von Talsperren befassen, an der Front aktueller Risikoforschung.

Abschliessend möchte der Verfasser noch beifügen, dass die gleiche Methodik auch im Flussbau angewendet werden könnte, um die Überflutungssicherheit der Ufer oder Dämme zu bestimmen. Anstelle der Einflüsse von Regulierorganen und des Windes liessen sich beispielsweise die Einflüsse einer stochastischen Sohlenausgangslage und der Geschiebeführung berücksichtigen.

Adresse des Verfassers: Prof. Dr. *Daniel Vischer*, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zentrum, CH-8092 Zürich.

Hilfswehr beim Kraftwerk Rheinau repariert

Mit dem Einsatz eines Grosshelikopters fanden im Kraftwerk Rheinau (Erag) Ende November 1994 die Reparaturarbeiten an einem Hilfswehr ihren erfolgreichen Abschluss. In der ersten Jahreshälfte entstand am unteren der beiden Hilfswehre innerhalb der markanten Rheinschlaufe ein Defekt an einer Wehrschütze. Die am deutschen Rheinufer liegende Wehröffnung konnte seither nicht mehr reguliert werden.

Damit die Reparaturarbeiten durchgeführt werden konnten, musste die Wehrklappe Ende August trockengelegt werden. Dazu wurden ober- und unterwasserseitig Notverschlüsse montiert. Im Bereich der dazwischenliegenden Wehröffnung konnte das Wasser anschliessend abgepumpt und der Schaden der Reparaturequipe zugänglich gemacht werden.

Die zum Einbau der Notverschlüsse erforderlichen Lehnenträger sind 28 Meter lang und rund neun Tonnen schwer. Diese werden üblicherweise in einem aufwendigen, heiklen Verfahren auf dem Wasser eingeschwommen und montiert, was nur unter optimalen Wasserverhältnissen möglich ist. Man hatte deshalb bei den Nordostschweizerischen Kraftwerken (NOK), die für die Betriebsführung des Kraftwerks Rheinau verantwortlich sind, nach neuen Wegen für den Einbau der Notverschlüsse gesucht und sie auch gefunden: Wie schon oft bei heiklen Transport- und Montageaufgaben erwies sich der Helikopter als schnellere und kostengünstigere Alternative.

Da die neun Tonnen schweren Lehnenträger die Nutzlast des stärksten in der Schweiz verfügbaren Helis wesentlich überschritten, mussten die Träger in «flugfähige» Abschnitte zerlegt und eine neue Montagetechnik entwickelt werden. In Zusammenarbeit mit einem Metallbauunternehmen wurden die Träger modifiziert und in drei Elemente aufgeteilt, von denen das schwerste 3,3 Tonnen wiegt. Bei der Gewichtsplanung ging man von der Tragkraft eines Helis vom Typ Super Puma aus, der bis 4,5 Tonnen Last heben kann.

Trotz minuziöser Vorbereitungen hatte sich das neue Verfahren in der Praxis zuerst zu bewähren. Die Verantwortlichen sahen dem ersten Montageflug Ende August deshalb mit Spannung entgegen. Die Aktion erwies sich als Erfolg: Innerhalb von 36 Minuten flog der Heli die insgesamt sechs Elemente ohne Probleme zu den Montagestellen, wo die Teile jeweils sofort angebaut wurden.

Die anschliessend in Angriff genommenen Reparaturarbeiten am beschädigten Wehr konnten im November abgeschlossen und die Wehröffnung wieder geflutet werden. Die inzwischen nicht mehr benötigten Notverschlüsse sind nun demontiert worden – auch diesmal wieder mit Hilfe des «fliegenden Super-Berglöwen». Wie Kraftwerk-Betriebsleiter Oskar Frey und Projektleiter Hans Jakob Keller von den NOK bestätigten, war die neuentwickelte Montagetechnik mit Hilfe des Helikopters so erfolgreich, dass künftige Einbauten von Notverschlüssen nur noch mit Hilfe des neuen Verfahrens erfolgen und auch für andere NOK-Flusskraftwerke geprüft werden.

Oskar Frey, Betriebsleiter Elektrizitätswerk Rheinau AG (Erag), CH-8462 Rheinau.

